Contenido principal del artículo

Dulce Rivero Albarran
Pontificia Universidad Católica del Ecuador
Ecuador
https://orcid.org/0000-0003-2736-5117
Stalin Arciniegas Aguirre
Pontificia Universidad Católica del Ecuador
Ecuador
https://orcid.org/0000-0001-9535-6058
María Fernández Badillo
Pontificia Universidad Católica del Ecuador
Ecuador
https://orcid.org/0000-0002-5854-0566
Vol. 26 Núm. 1 (2022), Monográfico junio 2022. Interacción del Marketing y la Inteligencia Artificial, páginas 1-14
DOI: https://doi.org/10.17979/redma.2022.26.1.9007
Enviado: mar 10, 2022 Aceptado: jun 7, 2022 Publicado: jun 30, 2022
Derechos de autoría Cómo citar

Resumen

La gestión del inventario de medicamentos es una de las tareas más complejas a realizar en una farmacia. Una buena estimación de las compras favorece el compromiso entre satisfacer la demanda de los usuarios y minimizar los costos de mantenimiento de inventario y de almacenamiento. Por ello, conocer a priori la demanda de un determinado medicamento ayuda a decidir qué cantidad se debe comprar de producto. Las aplicaciones inteligentes, como los sistemas de recomendaciones o los sistemas predictivos, son altamente demandados por la industria farmacéutica dado su potencial para optimizar la compra y/o tener un mayor control de los inventarios, entre otros beneficios. En este trabajo se proponen dos métodos para predecir la demanda de medicamentos de la Farmacia del Instituto del Seguro Social de Ecuador, en la ciudad de Ibarra; uno basado en series de tiempo y otro usando redes neuronales. Los métodos fueron aplicados a medicamentos que tenían un comportamiento estacional y cíclico. Los modelos se evaluaron usando el error cuadrático medio y el error absoluto y se escogió el de menor error, que, en este caso, fue el modelo generado por la red neuronal.

Detalles del artículo

Referencias

Ahmed, N., and Farzana, F. (2020). Forecasting supply chain sporadic demand using support vector machine approaches. Fuzzy Sets and Systems, 10, 87-102.

Álvarez-Rodríguez, D. A., Normey-Rico, J. E., and Flesch, R. C. C. (2017). Model predictive control for inventory management in biomass manufacturing supply chains. International Journal of Production Research, 55(12), 3596-3608. https://doi.org/10.1080/00207543.2017.1315191

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34.

Frank, R. J., Davey, N., and Hunt, S. P. (2001). Time series prediction and neural networks. Journal of intelligent and robotic systems, 31(1), 91-103.

Fernández, M. I., Chanfreut, P., Jurado, I., and Maestre, J. M. (2020). A Data-Based Model Predictive Decision Support System for Inventory Management in Hospitals. IEEE Journal of Biomedical and Health Informatics, 25(6), 2227-2236. https://doi.org/10.1109/JBHI.2020.3039692

Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. Hazen, B., and Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004

Gutiérrez-Alcoba, A., Rossi, R., Martin-Barragan, B., and Hendrix, E. M. (2017). A simple heuristic for perishable item inventory control under non-stationary stochastic demand. International Journal of Production Research, 55(7), 1885-1897. https://doi.org/10.1080/00207543.2016.1193248

Hakim, I. M., and Ulfah, W. M. (2019, September). Model Development to Determine Optimal Drugs Inventory in Indonesia Public Health Services. In Proceedings of the 2019 5th International Conference on Industrial and Business Engineering (pp. 28-32). https://doi.org/10.1145/3364335.3364368.

Hamilton, J. D. (2020). Time series analysis. Princeton University Press.

Janssen, L., Sauer, J., Claus, T., and Nehls, U. (2018). Development and simulation analysis of a new perishable inventory model with a closing days constraint under non-stationary stochastic demand. Computers & Industrial Engineering, 118, 9-22. https://doi.org/10.1016/j.cie.2018.02.016

Jurado, I., Maestre, J. M., Velarde, P., Ocampo-Martínez, C., Fernández, I., Tejera, B. I., and del Prado, J. R. (2016). Stock management in hospital pharmacy using chance-constrained model predictive control. Computers in biology and medicine, 72, 248-255. https://doi.org/10.1016/j.compbiomed.2015.11.011

Landeta, J. M. I., and Lango, H. M. (2013). Estudio comparativo de la aplicación de 6 modelos de inventarios para decidir la cantidad y el punto de reorden de un artículo. Ciencia y tecnología, (13), 217-232.

Liu, I., Colmenares, E., Tak, C., Vest, M. H., Clark, H., Oertel, M., and Pappas, A. (2021). Development and validation of a predictive model to predict and manage drug shortages. American Journal of Health-System Pharmacy, 78(14), 1309-1316. https://doi.org/10.1093/ajhp/zxab152

Maestre, J. M., Fernández, M. I., and Jurado, I. J. C. E. P. (2018). An application of economic model predictive control to inventory management in hospitals. Control Engineering Practice, (71), 120-128. https://doi.org/10.1016/j.conengprac.2017.10.012

Miller, S., El-Bahrawy, A., Dittus, M., Graham, M., and Wright, J. (2020, April). In Proceedings of the web conference 2020 (pp. 2669-2675). https://doi.org/10.1145/3366423.3380022

Nasr, W. W., and Elshar, I. J. (2018). Continuous inventory control with stochastic and non-stationary Markovian demand. European Journal of Operational Research, 270(1), 198-217.

Pauls-Worm, K. G., Hendrix, E. M., Alcoba, A. G., and Haijema, R. (2016). Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint. International Journal of Production Economics, 181, 238-246. https://doi.org/10.1016/j.ijpe.2015.10.009

Pavlyshenko, B. M. (2019). Machine-learning models for sales time series forecasting. Data, 4(1), 15. https://doi.org/10.3390/data4010015

Pulido-Rojano, A., Pizarro-Rada, A., Padilla-Polanco, M., Sánchez-Jiménez, M., and De-la-Rosa, L. (2020). Un enfoque de optimización para costos de inventario en modelos de inventario probabilísticos: Un caso de estudio. Ingeniare. Revista chilena de ingeniería, 28(3), 383-395. https://doi.org/10.4067/S0718-33052020000300383

Purohit, A. K., Choudhary, D., and Shankar, R. (2016). Inventory lot-sizing with supplier selection under non-stationary stochastic demand. International Journal of Production Research, 54(8), 2459-2469. https://doi.org/10.1080/00207543.2015.1102354

Sinaga, S., Pertiwi, L. S., and Ardian, T. (2016). Inventory simulation optimization under non stationary demand. International Journal of Applied Engineering Research, 11(1), 524-529.

Susarla, N., and Karimi, I. A. (2018). Integrated production planning and inventory management in a multinational pharmaceutical supply chain. In Computer aided chemical engineering, 41, 551-567). https://doi.org/10.1016/B978-0-444-63963-9.00022-1Getr

Tunc, H., Kilic, O. A., Tarim, S. A., and Eksioglu, B. (2011). The cost of using stationary inventory policies when demand is non-stationary. Omega, 39(4), 410-415. https://doi.org/10.1016/j.omega.2010.09.005

Zhang, Y., Hua, G., Wang, S., Zhang, J., and Fernandez, V. (2018). Managing demand uncertainty: Probabilistic selling versus inventory substitution. International Journal of Production Economics, 196, 56-67. https://doi.org/10.1016/j.ijpe.2017.10.001

Zhou, Q., Han, R., Li, T., and Xia, B. (2019). Joint prediction of time series data in inventory management. Knowledge and Information Systems, 61(2), 905-929. https://doi.org/10.1007/s10115-018-1302-y