Main Article Content

Natasja Nahar
University Pablo de Olavide
Spain
Jos´é Antonio González Jurado
University Pablo de Olavide
Spain
Sandro Fernandes da Silva
University Federal de Lavras
Brazil
Antonio Jesús Sánchez Oliver
Universtiy of Sevilla
Spain
Vol. 11 No. 2 (2025), Original papers, pages 1-25
DOI: https://doi.org/10.17979/sportis.2025.11.2.11344
Submitted: Oct 25, 2024 Accepted: Feb 25, 2025 Published: Apr 1, 2025
Copyright How to Cite

Abstract

Traditional swimming training practices often involve high training volumes. This study aims to analyze the impact of a 12-week high-volume, low-intensity training program on the athletic performance of young swimmers competing in official events, comparing the results across different age categories and by sex. A total of 144 underage swimmers (68 males and 76 females) participated in this study. The initial training volume ranged from 3,750 to 7,500 meters per week, depending on the category, with a 5% increase per mesocycle. Training intensity was monitored using the initial recorded time for the freestyle (65-75%) and maximum heart rate (HRmax) for the other strokes (60-70%). Significant improvements in performance times were observed across all categories throughout the intervention. All categories showed pre-post performance improvements (both in the total sample and in separate analyses by sex); however, no significant differences were found in improvements between categories. In conclusion, a 12-week high-volume training program has shown positive effects on the performance of children and adolescents competing in swimming, with more pronounced benefits at younger ages. While improvements were observed in both sexes when analyzed by category, they were more significant in female swimmers

Downloads

Article Details

References

Almási, G., Bosnyák, E., Móra, Á., Zsákai, A., Fehér, P. V., Annár, D., Nagy, N., Sziráki, Z., Kemper, H. C. G., y Szmodis, M. (2021). Physiological and Psychological Responses to a Maximal Swimming Exercise Test in Adolescent Elite Athletes. International Journal of Environmental Research and Public Health, 18(17), 9270. https://doi.org/10.3390/ijerph18179270

Amara, S., Hammami, R., Zacca, R., Mota, J., Negra, Y., y Chortane, S. G. (2023). The effect of combining HIIT and dry-land training on strength, technique, and 100-m butterfly swimming performance in age-group swimmers: a randomized controlled trial. Biology of Sport, 40(1), 85-92. https://doi.org/10.5114/biolsport.2023.110747

Aspenes, S. T., y Karlsen, T. (2012). Exercise-training intervention studies in competitive swimming. Sports Medicine, 42(6), 527–543. https://doi.org/10.2165/11630760-000000000-00000

Balyi, I., y Hamilton, A. (2004). Long-Term Athlete Development: Trainability in Childhood and Adolescence. Windows of Opportunity. Optimal Trainability. National Coaching Institute British Columbia and Advanced Training and Performance Ltd.

Barker, A. R., Day, J., Smith, A., Bond, B., y Williams, C. A. (2014). The influence of 2 weeks of low-volume high-intensity interval training on health outcomes in adolescent boys. Journal of Sports Sciences, 32(8), 757–765. https://doi.org/10.1080/02640414.2013.853132

Beyer, K. S., Stout, J. R., Redd, M. J., Baker, K. M., Church, D. D., Bergstrom, H. C., Hoffman, J.R., y Fukuda, D. H. (2020). Effect of somatic maturity on the aerobic and anaerobic adaptations to sprint interval training. Physiological Reports, 8(9), e14426. https://doi.org/10.14814/PHY2.14426

Born, D. P., Lomax, I., Rüeger, E., y Romann, M. (2022). Normative data and percentile curves for long-term athlete development in swimming. Journal of Science and Medicine in Sport, 25(3), 266–271. https://doi.org/10.1016/J.JSAMS.2021.10.002

Bridge, M., y Toms, M. (2013). The specialising or sampling debate: a retrospective analysis of adolescent sports participation in the UK. Journal of Sports Sciences, 31(1), 87-96. https://doi.org/10.1080/02640414.2012.721560

Casanova Machek, R. R., y Gamardo Hernández, P. F. (2017). Biological Maturation, Strength and Muscle Power in Front Crawl. Apunts. Educacion Fisica y Deportes, 128(2), 78–91. https://doi.org/10.5672/APUNTS.2014-0983.ES.(2017/2).128.05

Chortane, O. G., Amara, S., Barbosa, T. M., Hammami, R., Khalifa, R., Chortane, S. G., y van den Tillaar, R. (2022). Effect of High-Volume Training on Psychological State and Performance in Competitive Swimmers. International Journal of Environmental Research and Public Health, 19(13), 7619. https://doi.org/10.3390/IJERPH19137619

Cicone, Z. S., Holmes, C. J., Fedewa, M. V., MacDonald, H. V., y Esco, M. R. (2019). Age-based prediction of maximal heart rate in children and adolescents: A systematic review and meta-analysis. Research quarterly for exercise and sport, 90(3), 417-428. https://doi.org/10.1080/02701367.2019.1615605

Clemente-Suárez, V. J., y Arroyo-Toledo, J. J. (2018). The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training Program. Journal of Medical Systems, 42, 47. https://doi.org/10.1007/s10916-018-0907-8

Costa, M. J., Barbosa, T. M., Bragada, J. A., Marinho, D. A., y Silva, A. J. (2012). Longitudinal interventions in elite swimming: a systematic review based on energetics, biomechanics, and performance. Journal of Strength and Conditioning Research, 26(7), 2006–2016. https://doi.org/10.1519/JSC.0B013E318257807F

Costill, D. L., Thomas, R., Robergs, R. A., Pascoe, D., Lambert, C., Barr, S., y Fink, W. J. (1991). Adaptations to swimming training: influence of training volume. Medicine and Science in Sports and Exercise, 23(3), 371–377.

Dalamitros, A. A., Zafeiridis, A. S., Toubekis, A. G., Tsalis, G. A., Pelarigo, J. G., Manou, V., y Kellis, S. (2016). Effects of short-interval and long-interval swimming protocols on performance, aerobic adaptations, and technical parameters: A training study. Journal of Strength and Conditioning Research, 30(10), 2871–2879. https://doi.org/10.1519/JSC.0000000000001369

Domínguez, R., Sánchez-Oliver, A. J., Cuenca, E., Jodra, P., Fernandes da Silva, S., y Mata-Ordóñez, F. (2017). Nutritional needs in the professional practice of swimming: a review. Journal of Exercise Nutrition & Biochemistry, 21(4), 1–10. https://doi.org/10.20463/JENB.2017.0030

Dotan, R., Mitchell, C., Cohen, R., Klentrou, P., Gabriel, D., y Falk, B. (2012). Child—adult differences in muscle activation—a review. Pediatric Exercise Science, 24(1), 2. https://doi.org/10.1123/pes.24.1.2

Ferreira, S., Carvalho, D. D., Cardoso, R., Rios, M., Soares, S., Toubekis, A., y Fernandes, R. J. (2021). Young Swimmers’ Middle-Distance Performance Variation within a Training Season. International Journal of Environmental Research and Public Health, 18(3), 1–10. https://doi.org/10.3390/IJERPH18031010

Fransen, J., Pion, J., Vandendriessche, J., Vandorpe, B., Vaeyens, R., Lenoir, M., y Philippaerts, R. M. (2012). Differences in physical fitness and gross motor coordination in boys aged 6-12 years specializing in one versus sampling more than one sport. Journal of Sports Sciences, 30(4), 379-386. https://doi.org/10.1080/02640414.2011.642808

Geladas, N. D., Nassis, G. P., y Pavlicevic, S. (2005). Somatic and physical traits affecting sprint swimming performance in young swimmers. International Journal of Sports Medicine, 26(2), 139–144. https://doi.org/10.1055/s-2004-817862

Gillen, J. B., y Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism, 39(3), 409–412. https://doi.org/10.1139/apnm-2013-0187

González-Ravé, J. M., Pyne, D. B., del Castillo, J. A., González-Mohíno, F., y Stone, M. H. (2022). Training periodization for a world-class 400 meters individual medley swimmer. Biology of Sport, 39(4), 883–888. https://doi.org/10.5114/BIOLSPORT.2022.109954

Greyson, I., Kelly, S., Peyrebrune, M., y Furniss, B. (2010). Interpreting and implementing the long term athlete development model: English swimming coaches’ views on the (swimming) LTAD in practice. International Journal of Sports Science & Coaching, 5(3), 403-406.

Hibberd, E. E., Laudner, K. G., Kucera, K. L., Berkoff, D. J., Yu, B., y Myers, J. B. (2016). Effect of Swim Training on the Physical Characteristics of Competitive Adolescent Swimmers. American Journal of Sports Medicine, 44(11), 2813–2819. https://doi.org/10.1177/0363546516669506

Issurin, V. B. (2010). New horizons for the methodology and physiology of training periodization. Sports Medicine, 40(3), 189–206. https://doi.org/10.2165/11319770-000000000-00000

Jayanthi, N. A., LaBella, C. R., Fischer, D., Pasulka, J., y Dugas, L. R. (2015). Sports-specialized intensive training and the risk of injury in young athletes: a clinical case-control study. American Journal of Sports Medicine, 43(4), 794-801. https://doi.org/10.1177/0363546514567298

Kamandulis, S., Juodsnukis, A., Stanislovaitiene, J., Zuoziene, I. J., Bogdelis, A., Mickevicius, M., Eimantas, N., Snieckus, A., Olstad, B. H., & Venckunas, T. (2020). Daily Resting Heart Rate Variability in Adolescent Swimmers during 11 Weeks of Training. International Journal of Environmental Research and Public Health, 17(6), 2097. https://doi.org/10.3390/ijerph17062097

Karabıyık, H., Gülü, M., Yapici, H., Iscan, F., Yagin, F. H., Durmuş, T., … Alwhaibi, R. (2023). Effects of 12 Weeks of High-, Moderate-, and Low-Volume Training on Performance Parameters in Adolescent Swimmers. Applied Sciences, 13(20), 11366. https://doi.org/10.3390/APP132011366

Kilen, A., Larsson, T. H., Jørgensen, M., Johansen, L., Jørgensen, S., y Nordsborg, N. B. (2014). Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PLoS One, 9(4), e95025. https://doi.org/10.1371/JOURNAL.PONE.0095025

Lang, M., y Light, R. (2010) Interpreting and Implementing the Long Term Athlete Development Model: English Swimming Coaches’ Views on the (Swimming) LTAD in Practice. International Journal of Sports Science and Coaching, 5(3), 389-402. https://doi.org/10.1260/1747-9541.5.3.389

Liu, H., y Wang, J. (2023). The Effects of Incorporating Dry-land Short Intervals to Long Aerobic-dominant In-Water Swimming Training on Physiological Parameters, Hormonal Factors, and Performance: A Randomized-Controlled Intervention Study. Journal of Sports Science & Medicine, 22(2), 329–337. https://doi.org/10.52082/JSSM.2023.329

Lloyd, R. S., y Oliver, J. L. (2012). The youth physical development model: A new approach to long-term athletic development. Strength and Conditioning Journal, 34(3), 61–72. https://doi.org/10.1519/SSC.0B013E31825760EA

Lloyd, R., Oliver, J., Faigenbaum, A., Howard, R., De Ste Croix, M., Williams, C., Best, T., Alvar, B., Micheli, L., Thomas, D., Hatfield, D., Cronin, J., y Myer, G. (2015). Long-term athletic development, part 2: barriers to success and potential solutions. Journal of Strength and Conditioning Research, 29(5), 1451-1464. https://doi.org/10.1519/01.JSC.0000465424.75389.56

Maglischo, E. W. (2003). Endurance training. En Swimming Fastest (pp. 417-450). Human Kinetics.

McNarry, M. A., Lester, L., Brown, J., y Mackintosh, K. A. (2020). Investigating the Modulatory Role of Chronological and Biological Age on Performance Predictors in Youth Swimmers. Journal of Science in Sport and Exercise, 2(4), 349–358. https://doi.org/10.1007/s42978-020-00082-1

Ministerio de Cultura y Deporte, C. S. de D. (2022). Encuesta de Hábitos Deportivos en España. Retrieved January 1, 2024, from https://www.cultura.gob.es/servicios-al-ciudadano/estadisticas/deportes/encuesta-habitos-deportivos-en-espana.html

Moreno, B., Veiga, S., Sánchez-Oliver, A. J., Domínguez, R., y Morencos, E. (2022). Analysis of Sport Supplement Consumption by Competitive Swimmers According to Sex and Competitive Level. Nutrients, 14(15). https://doi.org/10.3390/NU14153218

Morouço, P. G., Marinho, D. A., Izquierdo, M., Neiva, H., y Marques, M. C. (2015). Relative Contribution of Arms and Legs in 30 s Fully Tethered Front Crawl Swimming. BioMed Research International, 2015, 563206. https://doi.org/10.1155/2015/563206

Mostafavifar, A., Best, T., y Myer, G. (2013). Early sport specialisation, does it lead to long-term problems? British Journal of Sports Medicine, 47(17), 1060-1061. https://doi.org/10.1136/bjsports-2012-092005

Myer, G. D., Jayanthi, N., Difiori, J. P., Faigenbaum, A. D., Kiefer, A. W., Logerstedt, D., y Micheli, L. J. (2015a). Sport specialization, part I: does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes? Sports Health, 7(5), 437-442. https://doi.org/10.1177/194173811559

Myer, G. D., Jayanthi, N., DiFiori, J. P., Faigenbaum, A. D., Kiefer, A. W., Logerstedt, D., y Micheli, L. J. (2015b). Sports specialization, part II: alternative solutions to early sport specialization in youth athletes. Sports Health, 8(1), 65-73. https://doi.org/10.1177/1941738115614811

Navarro, F., Oca, A., y Castañón, F. J. (2003). El entrenamiento del nadador Joven. Madrid: Gymnos.

Nevill, A. M., Holder, R. L., Baxter-Jones, A., Round, J. M., y Jones, D. A. (1998). Modeling developmental changes in strength and aerobic power in children. Journal of Applied Physiology, 84(3), 963–970. https://doi.org/10.1152/jappl.1998.84.3.963

Nugent, F. J., Comyns, T. M., Burrows, E., y Warrington, G. D. (2017a). Effects of Low-Volume, High-Intensity Training on Performance in Competitive Swimmers: A Systematic Review. Journal of Strength and Conditioning Research, 31(3), 837–847. https://doi.org/10.1519/JSC.0000000000001583