Communicative effectiveness of artificial intelligence-generated graphic design
Main Article Content
DOI:
https://doi.org/10.17979/redma.2025.29.2.12593Abstract
This study systematically reviews the scientific production (2010-2025) on graphic design generated by artificial intelligence (AI), assessing its communicative effectiveness in terms of attention, persuasion, and recall. Based on a corpus of 250 documents indexed in WoS and Scopus, it applies a mixed methodology grounded in PRISMA and structural bibliometric analysis. The analysis reveals a shift from isolated computational approaches toward interdisciplinary frameworks integrating computer vision, persuasive communication, and media cognition. Stable semantic patterns, collaborative networks, and persistent methodological gaps are identified, particularly concerning the empirical evaluation of visual impact on users. Findings also show that AI reshapes aesthetics and alters perceptions of authenticity. The study’s contribution lies in constructing an integrative conceptual framework linking computational and psychocognitive metrics, offering replicable guidelines and a critical reading of automated design.
Keywords:
Article Details
References
Aria, M. and Cuccurullo, C. (2017). Bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Callon, M., Courtial, J. P., Turner, W. A. and Bauin, S. (1983). From translations to problematic networks: an introduction to co-word analysis. Social Science Information, 22(2), 191–235. https://doi.org/10.1177/053901883022002003
Chan, J. (2025). AI-generated imagery in sustainable gastronomy tourism: a study from bottom-up to top-down processing. Tourism Management, 108, Artículo: 105093. https://doi.org/10.1016/j.tourman.2024.105093
Chen, C. (2006). CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. https://doi.org/10.1002/asi.20317
Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., and Herrera, F. (2011). Science mapping software tools: review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402.
https://doi.org/10.1002/asi.21525
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. and Lim, W.M. (2021). How to conduct a bibliometric analysis: an overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
Glänzel, W. and Schubert, A. (2004). Analysing scientific networks through co-authorship. In H.F. Moed, W. Glänzel & U. Schmoch (eds), Handbook of quantitative science and technology research. Springer, (pp. 257-276). https://doi.org/10.1007/1-4020-2755-9_12
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 27, pp. 2672–2680). Curran Associates, Inc.
Grassini, S. (2024). Computational power and subjective quality of AI-generated outputs: the case of aesthetic judgement and positive emotions in AI-generated art. International Journal of Human–Computer Interaction, 14(14), 9056-9065. https://doi.org/10.1080/10447318.2024.2422755
Grassini, S. and Koivisto, M. (2024). Positive emotional impact of AI-generated art and user perception. International Journal of Human–Computer Interaction, 41(14), 9056-9065. https://doi.org/10.1080/10447318.2024.2422755
Hwang, Y. and Wu, Y. (2025). Graphic design education in the era of text-to-image generation: transitioning to contents creator. International Journal of Art & Design Education, 44(1), 239-253. https://doi.org/10.1111/jade.12558
Laba, N. (2024). Engine for the imagination? Visual generative media and the issue of representation. Media, Culture & Society, 46(8), 1599-1620. https://doi.org/10.1177/01634437241259950
Li, H., Liu, R., Wang, L., and Zhang, J. (2022). Design of visual communication effect evaluation method of artworks based on machine learning. Mobile Information Systems, Article: 4566185. https://doi.org/10.1155/2022/4566185
Lin, F., Song, W., Li, Y., and Xu, W. (2024). Investigating the Relationship between Balanced Composition and Aesthetic Judgment through Computational Aesthetics and Neuroaesthetic Approaches. Symmetry, 16(9), Article: 1191. https://doi.org/10.3390/sym16091191
McCormack, J., Gifford, T., and Hutchings, P. (2019, April). Autonomy, authenticity, authorship and intention in computer generated art. In International conference on computational intelligence in music, sound, art and design (part of EvoStar) (pp. 35-50). Springer International Publishing. https://doi.org/10.1007/978-3-030-16667-0_3
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372 (71). https://doi.org/10.1136/bmj.n71
Pons, P., and Latapy, M. (2005, October). Computing communities in large networks using random walks. In International symposium on computer and information sciences (pp. 284-293). Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11569596_31
Rani, S., Jining, D., Shah, D., Xaba, S., and Shoukat, K. (2025). Examining the impacts of artificial intelligence technology and computing on digital art: a case study of Edmond de Belamy and its aesthetic values and techniques. AI & SOCIETY, 40(4), 2417-2435. https://doi.org/10.1007/s00146-024-01996-y
Sands, S., Demsar, V., Ferraro, C., Wilson, S., Wheeler, M., and Campbell, C. (2025). Easing AI-advertising aversion: how leadership for the greater good buffers negative response to AI-generated ads. International Journal of Advertising, 1-21. https://doi.org/10.1080/02650487.2025.2457080
van Eck, N. J. and Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Wagner, C. and Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608-1618. https://doi.org/10.1016/j.respol.2005.08.002
Yun, Q. (2025). Vision Transformers (ViTs) for feature extraction and classification of AI-generated visual designs. IEEE Access, 13, 69459-69478. https://doi.org/10.1109/ACCESS.2025.3562130
Zhou, Y., and Kawabata, H. (2023). Eyes can tell: assessment of implicit attitudes toward AI art. i-Perception, 14(5),1-14. https://doi.org/10.1177/20416695231209846

