Main Article Content

Milagros Mateos Núñez
Spain
https://orcid.org/0000-0003-2064-0921
Español
UNIVERSIDAD DE EXTREMADURA
Spain
https://orcid.org/0000-0002-0246-9406
Vol. 6 No. 1 (2022), Research in science education
DOI: https://doi.org/10.17979/arec.2022.6.1.8954
Submitted: Feb 7, 2022 Accepted: May 3, 2022 Published: Jun 15, 2022
How to Cite

Abstract

Many institutions and educational experts have developed programmes based on integrated STEM teaching owing to the benefits associated with the approach. The aim of this study is to analyse the pedagogical benefits of STEM workshops (experimental group) versus an academic-expository methodology (control group). The sample for the study comprised over 200 5th- and 6th-class primary school pupils, and data were collected using questionnaires designed to assess cognitive and emotional variables. The results showed that pupils in the experimental group maintained their acquired learning in the long term while those in the control group returned to their initial level of knowledge, thus confirming the effectiveness of STEM workshops as a methodological strategy in the primary school classroom. At an emotional level, the experimental group manifested emotions such as fun and satisfaction for the most part, while pupils in the control group manifested emotions such as boredom and anger.

Downloads

Download data is not yet available.

Article Details

References

Barbosa, L. H. (2013). Construcción, validación y calibración de un instrumento de medida del aprendizaje: test de ley de Bernoulli. Revista Educación en Ingeniería, 8(15), 24-37.

Bassford, M.L., Crisp, A., O’Sullivan, A., Bacon, J. y Fowler, M. (2016). CrashEd – a live immersive, learning experience embedding STEM subjects in a realistic, interactive crime scene. Research in Learning Technology, 24(1), 30089. DOI: https://doi.org/10.3402/rlt.v24.30089

Brígido, M., Borrachero, A.B., Bermejo, M.L. y Mellado, V. (2013). Prospective primary teachers’ self-efficacy and emotions in science teaching. European Journal of Teacher Education, 36(2), 200-217. DOI: https://doi.org/10.1080/02619768.2012.686993

Cohen, J. (ed.) (1988). Statistical power analysis for the behavioral sciences (2ª ed.). Erlbaum.

Corlu, M. S., Capraro, R. M. y Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Eğitim ve Bilim, 39(171), 74-85.

COSCE (2011). Informe ENCIENDE: Enseñanza de las Ciencias en la Didáctica escolar para edades tempranas en España. Madrid: Rubes Editorial.

Ding, L., Chabay, R., Sherwood, B. y Beichner, R. (2006). Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical review special Topics-Physics education research, 2(1), 010105.

Fadzil, H. M. y Saat, R. M. (2014). Enhancing STEM Education during School Transition: Bridging the Gap in Science Manipulative Skills. Eurasia Journal of Mathematics, Science & Technology Education, 10(3), 209-218. DOI: https://doi.org/10.12973/eurasia.2014.1071a

Furner, J. M. y Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 185-189. DOI: https://doi.org/10.12973/ejmste/75397

Gómez-Crespo, M. A., Pozo, J. I. y Gutiérrez, M. S. (2004). Enseñando a comprender la natura¬leza de la materia: el diálogo entre la química y nuestros sentidos. Educación Química, 15(3), 198-209.

González-Peiteado, M. y Pino-Juste, M. (2016). Los estilos de enseñanza: construyendo puentes para transitar las diferencias individuales del alumnado. Revista Complutense de Educación, 27(3), 1175-1191. DOI: https://doi.org/10.5209/rev_RCED.2016.v27.n3.47563

Gutherie, J. T., Wigfield, A. y VonSecker, C. (2000). Effects of integrated instruction on motivation and strategy use in reading. Journal of educational psychology, 92(2), 331. DOI: https://doi.org/10.1037/0022-0663.92.2.331

Heil, D., Pearson, G. y Burger, S. (2013). Understanding integrated STEM education: Report on a national study. American Society for Engineering Education.

Hernández-Suárez, C. A., Pabón-Galán, C. A. y Prada-Núñez, R. (2017). Desarrollo de competencias y su relación con el contexto educativo entre docentes de ciencias naturales. Revista Virtual Universidad Católica del Norte, 51, 194-215. Recuperado de: http://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/852/1370

Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670. DOI: https://doi.org/10.1080/09500690305021

Hurley, M. M. (2001). Reviewing integrated science and mathematics: The search for evidence and definitions from new perspectives. School science and mathematics, 101(5), 259-268. DOI: https://doi.org/10.1111/j.1949-8594.2001.tb18028.x

Jarvis, T. y Pell, A. (2004). Primary teachers’ changing attitudes and cognition during a two year science in-service programme and their effect on pupils. International Journal of Science Education, 26(14), 1787-1811.

Kelley, T. R. y Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 1-11.

King, K. P. y Wiseman, D. L. (2001). Comparing science efficacy beliefs of elementary education majors in integrated and non-integrated teacher education coursework. Journal of Science Teacher Education, 12(2), 143-153. DOI: https://doi.org/10.1023/A:1016681823643

Martín del Pozo, R., Fernández-Lozano, P., González-Ballesteros, M. y De Juanas, Á. (2013). El dominio de los contenidos escolares: competencia profesional y formación inicial de maestros. Revista de Educación, 36, 363-387. DOI: https://doi.org/10.4438/1988-592X-RE-2011-360-115

Martínez-Borreguero, G., Mateos-Núñez, M. y Naranjo-Correa, F.L. (2019). Implementation and Didactic Validation of STEM Experiences in Primary Education: Analysis of the Cognitive and Affective Dimension. En IntechOpen (Eds.), Theorizing STEM Education in the 21st Century. IntechOpen.

Martínez-Borreguero, G., Naranjo-Correa, F. L., Mateos-Núñez, M. y Sánchez-Martín, J. (2018). Recreational experiences for teaching basic scientific concepts in primary education: The case of density and pressure. Eurasia Journal of Mathematics, Science and Technology Education, 14(12), em1616. DOI: https://doi.org/10.29333/ejmste/94571

Melo-Niño, L. V., Sánchez, R., Cañada, F. y Martínez-Borreguero, G. (2016). Dificultades del aprendizaje sobre el principio de Arquímedes en el contexto de la flotación. Revista Brasileira de Ensino de Física, 38(4), e4401. DOI: https://doi.org/10.1590/1806-9126-RBEF-2016-0077

Miyake, A., Kost-Smith, L. E., Finkelstein, N. D., Pollock, S. J., Cohen, G. L. e Ito, T. A. (2010). Reducing the gender achievement gap in college science: A classroom study of values affirmation. Science, 330(6008), 1234-1237.

Mora, C. y Herrera, D. (2009). Una revisión sobre ideas previas del concepto de fuerza. Latin-American Journal of Physics Education, 3(1), 72-86.

Oros, L.B., Manucci, V. y Richaud de Minzi, M.C. (2011). Desarrollo de emociones positivas en la niñez. Lineamientos para la intervención escolar. Educación y Educadores, 14(3), 493-509.

Perry, D.L. (ed.) (2012). What Makes Learning Fun? Principles for the Design of Intrinsically Motivating Museun Exhibits. AltaMira Press.

Vaval, L., Bowers, A. J. y Snodgrass Rangel, V. (2019). Identifying a typology of high schools based on their orientation toward STEM: A latent class analysis of HSLS: 09. Science Education, 103(5), 1151-1175. DOI: https://doi.org/10.1002/sce.21534

Wade‐Jaimes, K., Demir, K. y Qureshi, A. (2018). Modeling strategies enhanced by metacognitive tools in high school physics to support student conceptual trajectories and understanding of electricity. Science Education, 102(4), 711-743. DOI: https://doi.org/10.1002/sce.21444