Contenido principal del artículo

Magdalena Rokicka-Hebel
Academy of Tourism and Hotel Management in Gdansk, Poland
Polonia
https://orcid.org/0000-0002-6974-8143
Grzegorz Bielec
Universidad de Educación Física y Deporte de Gdansk
Polonia
https://orcid.org/0000-0003-4606-4045
Vol. 9 Núm. 2 (2023), Artículos Originales, Páginas 262-283
DOI: https://doi.org/10.17979/sportis.2023.9.2.9296
Recibido: sept. 15, 2022 Aceptado: abr. 6, 2023 Publicado: may. 1, 2023
Cómo citar

Resumen

Los cambios en la rutina diaria y la disminución de la actividad física durante el periodo de vacaciones de verano, suelen provocar un aumento de peso corporal en los niños en edad escolar. Sin embargo, no se ha investigado a fondo el impacto de las vacaciones de verano en la composición corporal de los niños deportistas. El presente estudio tenía como objetivo identificar los posibles cambios en la composición corporal y la fuerza muscular respiratoria tras unas vacaciones de verano de 8 semanas en nadadores jovenes.  Dieciocho niñas y quince niños de 10 a 13 años (media de 11.6±1.0) participaron en el estudio . Las mediciones se realizaron en junio y se repitieron en septiembre del mismo año. Se evaluó la composición corporal con un analizador InBody 720 y la fuerza muscular respiratoria con un dispositivo MicroRPM. Se realizó una prueba de crol frontal de cincuenta metros para inducir la fatiga de los músculos respiratorios. Todos los parámetros de composición corporal analizados, es decir, la masa corporal, el índice de masa corporal, el tejido y los componentes musculares, aumentaron sustancialmente tras el descanso estival (p<0.05). No se detectaron cambios significativos en la presión inspiratoria máxima (MIP) ni en la presión espiratoria máxima (MEP) tanto en los chicos como en las chicas después del periodo de desentrenamiento (p>0.05). Se puede concluir que las vacaciones de verano de 8 semanas tuvieron un efecto sobre los parámetros de composición corporal en los nadadores juveniles, pero no se observó ningún efecto sobre su fuerza muscular respiratoria. Se necesitan estudios con un mayor número de participantes que practiquen diversas actividades deportivas para comprender mejor el efecto de las vacaciones de verano en los parámetros antropomórficos y respiratorios de los deportistas juveniles.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citas

Altavilla, C., Sellez-Perez, S., Comino-Comino, I., Comeche-Guijarro, J.M., Caballero-Perez, P. & Tuells, J. (2020). Comparisons of summer break effect on anthropometric profile, body composition and somatotype between adolescent swimmers and less active adolescents. Revista Andaluza de Medicina del Deporte, 13 (3), 134-139.

Aphamis, G., Ioannou, Y. & Giannaki, C.D. (2019). Physical fitness and obesity levels during an academic year followed by summer holidays: an issue of insufficient time for physical activity. International Journal of Adolescent Medicine and Health, 31(1), 20160137. https://doi.org/10.1515/ijamh-2016-0137

Atay, E. & Kayalarli, G. (2013). The effects of detraining period of female basketball team players aged 10-12. Turkish Journal of Sport and Exercise, 15 (2), 51-55.

Bostanci, O., Kabadayi, M., Mayda, M.H., Yilmaz, A.K. & Yilmaz, C. (2021). Shooting performance and respiratory muscle strength in archers aged 9-12. Baltic Journal of Health and Physical Activity, 13(3), 31-36. https://doi.org/10.29359/BJHPA.13.3.04

Brazendale, K., Beets, M.W., Turner-McGrievy, G.M., Kaczynski, A.T., Pate, R.R. & Weaver, R.G. (2018). Children's obesogenic behaviors during summer versus school: a within-person comparison. Journal of School Health, 88 (12), 886-892. https://doi.org/10.1111/josh.12699

Brusseau, T. & Burns, R.D. (2018). Children's weight gain and cardiovascular fitness loss over the summer. International Journal of Environmental Research and Public Health, 15(12), 2770. https://doi.org/10.3390/ijerph15122770

Burt Solorzano, C.M. & McCartney, C.R. (2010). Obesity and the pubertal transition in girls and boys. Reproduction, 140 (3), 399-410. https://doi.org/10.1530/REP-10-0119

Chainok, P., Machado, L., De Jesus, K., Abraldes, A.A., Borgonovo-Santos, M., Fernandes, R. & Vilas-Boas, J.P. (2021). Backstroke to breaststroke turning performance in age-group swimmers: hydrodynamic characteristics and pull-out strategy. International Journal of Environmental Research and Public Health, 18 (4), 1858. https://doi.org/10.3390/ijerph18041858

Cordain, L., Tucker, A., Moon, D. & Stager J.M. (1990). Lung volumes and maximal respiratory pressures in collegiate swimmers and runners. Research Quarterly for Exercise and Sport, 61(1), 70-74. https://doi.org/10.1080/02701367.1990.10607479

Cox, D.W., Verheggen, M.M., Stick, S.M. & Hall, G.L. (2012). Characterization of maximal respiratory pressures in healthy children. Respiration, 84 (6), 485-491. https://doi.org/10.1159/000342298

Cristi-Montero, C., Bresciani, G., Alvarez, A., Arriagada, V., Beneventi, A., Canepa, V., Espinoza, P., Parraguez, M., Toledo, C., Valencia, S. & Rodriguez-Rodriguez, F. (2014). Critical periods in the variation in body composition in school children. Nutricion Hospitalaria, 30 (4), 782-786. https://doi.org/10.3305/nh.2014.30.4.7694

Da Fontoura, A.S., Schneider, P. & Meyer, F. (2004). Effect of the muscular strength detraining in prepubertal boys. Revista Brasileira de Medicina do Esporte, 10 (4), 285-288. https://doi.org/10.1590/S1517-86922004000400005

Dassios, T. & Dimitriou, G. (2019). Determinants of inspiratory muscle function in healthy children. Journal of Sport and Health Science, 8 (2), 183-188. https://doi.org/10.1016/j.jshs.2016.08.002

de Souza Espindola, C., Minsky, R.C., Cardoso, J., de Figueiredo, I.C.X.S. & Schivinski, C.I.S. (2021). Level of physical activity and respiratory muscle force in healthy children. Fisioterapia e Pesquisa, 28(2), 179-185.

Delgado, R.N., Campos, T.F., de Oliveira Borja, R., de Freitas, D.A., da Silva Chaves, G.S. & de Mendonca, K.M.P.P. (2015). Maximal respiratory pressures of healthy children: comparison between obtained and predicted values. Pediatric Physical Therapy, 27, 31-37. https://doi.org/10.1097/PEP.0000000000000100

Dimitriadis, Z., Kapreli, E., Konstantinidou, I., Oldham, J. & Strimpakos, N. (2011). Test/retest reliability of maximum mouth pressure measurements with the MicroRPM in healthy volunteers. Respiratory Care, 56(6), 776-782. https://doi.org/10.4187/respcare.00783

Drenowatz, C., Ferrari, G. & Greier, K. (2021). Changes in physical fitness during summer months and the school year in Austrian elementary school children - a 4-year longitudinal study. International Journal of Environmental Research and Public Health, 18, 6920. https://doi.org/10.3390/ijerph18136920

D'Souza, C.D. & Avadhany, S,T. (2014). Effect of yoga training and detraining on respiratory muscle strength in pre-pubertal children: a randomized trial. International Journal of Yoga, 7, 41-47.

Gavanda, S., Geisler, S., Quitmann, O.J., Bauhaus, H. & Schiffer, T. (2020). Three weeks of detraining does not decrease muscle thickness, strength or sport performance in adolescent athletes. International Journal of Exercise Science, 13 (6), 633-644.

Heinzmann-Filho, J.P., Vasconcellos-Vidal, P.C., Jones, M.H. & Faguendes-Donadio, M.V. (2012). Normal values for respiratory muscle strength in healthy preschoolers and school children. Respiratory Medicine, 106 (12), 1639-1646. https://doi.org/10.1016/j.rmed.2012.08.015

Hulzebos, E., Takken, T., Reijneveld, E.A., Mulder, M.M.G. & Bongers, B.C. (2018). Reference values for respiratory muscle strength in children and adolescents. Respiration, 95 (4), 235-243. https://doi.org/10.1159/000485464

Kulik-Rechberger, B. & Kozlowska, M. (2017). Is there a further acceleration in the growth and pubertal development in girls? Pediatric Endocrinology, 16 (2), 95-100. https://doi.org/10.18544/ep-01.16.02.1666

Larson, J.L., Covey, M.K., Vitalo, C.A., Alex, C.G., Patel, M. & Kim, M.J. (1993). Maximal inspiratory pressure. Learning effect and test-retest reliability in patients with chronic obstructive pulmonary disease. Chest, 104 (2), 448-453. https://doi.org/10.1378/chest.104.2.448

Maldonado-Martin, S., Camara, J., James, D.V.B., Fernandez-Lopez, J.R. & Artetxe-Gezuraga, X. (2017). Effects of long-term training cessation in young top-level road cyclists. Journal of Sports Sciences, 35 (14), 1396-1401. https://doi.org/10.1080/02640414.2016.1215502

McKenna, L., Straker, L. & Smith, A. (2012). Can scapular and humeral head position predict shoulder pain in adolescent swimmers and non-swimmers? Journal of Sports Sciences, 30 (16), 1767-1776. https://doi.org/10.1080/02640414.2012.718092

Moreira, M.F., Morais, J.E., Marinho, D.A., Silva, A.J., Barbosa, T.M. & Costa, M.J. (2014). Growth influences biomechanical profile of talented swimmers during the summer break. Sports Biomechanics, 13(1), 62-74. https://doi.org/10.1080/14763141.2013.865139

Moreno, J.P., Musaad, S., Dadabhoy, H., Baranowski, T., Crowley, S.J., Thompson, D., Chen, T.A. & Johnston, C.A. (2022). Seasonality of children's height and weight and their contribution to accelerated summer weight gain. Frontiers in Physiology, 13, 793999. https://doi.org/10.3389/fphys.2022.793999

Ormsbee, M.J. & Arciero, P.J. (2012). Detraining increases body fat and weight and decreases VO2 peak and metabolic rate. Journal of Strength and Conditional Research, 26 (8), 2087-2095. https://doi.org/10.1519/JSC.0b013e31823b874c

Patil, P., Deodhar, A. & Jadhav, S. (2020). Respiratory muscle strength in children in age group 7-12 years: a cross-sectional observational pilot study. International Journal of Health Sciences and Research, 10 (11), 145-156.

Pawar, S., Narayan, A., Karnad, S.D., Alaparthi, G.K. & Bairapareddy, K.C. (2021). Respiratory muscle strength in healthy Indian children of age 7-17 years: a cross-sectional study. International Journal of General Medicine,14, 4413-4422. https://doi.org/10.2147/IJGM.S315626

Rochat, I., Cote, A. & Boulet, L-P. (2022). Determinants of lung function changes in athletic swimmers. A review. Acta Paediatrica, 111(2), 259-264. https://doi.org/10.1111/apa.16095

Rufo, J.C., Paciencia, I., Silva, D., Martins, C., Madureira, J., de Oliveira Fernandes, E., Padrao, P., Moreira, P., Delgado, L. & Moreira, A. (2018). Swimming pool exposure is associated with autonomic changes and increase airway reactivity to a beta 2-agonist in school aged children: a cross-sectional survey. PLoS One, 13 (3), e0193848. https://doi.org/10.1371/journal.pone.0193848

Sambanis, M., Noussios, G., Sambanis, A. & Kalogeropoulos, I. (2006). Detraining and pulmonary function in adolescent female swimmers. Minerva Pneumologica, 45(4), 221-228.

Sambanis, M. (2006) Effects of detraining on pulmonary function and performance in young male swimmers. Minerva Pneumologica, 45(2), 121-128.

Santos, A., Marinho, D.A., Costa, A.M., Izquierdo, M. & Marques, M.C. (2011). The effects of concurent resistance and endurance training follow a specific detraining cycle in young school girls. Journal of Human Kinetics, 29A: 93-103. https://doi.org/10.2478/v10078-011-0064-3

Santos, M.A.R.C., Pinto, M.L., Sant'Anna, C.C. & Bernhoeft, M. (2011). Maximal respiratory pressures among adolescent swimmers. Revista Portuguesa de Pneumologia, 17(2), 66-70. https://doi.org/10.1016/s2173-5115(11)70016-1

Sfondrini, M.F., Zampetti, P., Luscher, J., Gandini, P., Gandia-Franco, J.L. & Scribante, A. (2020). Orthodontic treatment and healthcare goals: evaluation of multibrackets treatment results based using PAR index (Peer Assessment Rating). Healthcare, 8, 473. https://doi.org/10.3390/healthcare8040473

Siervogel, M,R,, Demerath, E.W., Schuber, C., Remsberg, K.E., Chumlea W.C., Sun, S., Czerwinski, S.A. & Bradford, T. (2003). Puberty and body composition. Hormone Research, 60 (suppl.1), 36-45. https://doi.org/10.1159/000071224

Soudon, P., Steens, M. & Toussaint, M. (2008). A comparison of invasive versus noninvasive fulltime mechanical ventilation in Duchenne muscular dystrophy. Chronic Respiratory Disease, 5(2), 87-93. https://doi.org/10.1177/1479972308088715

Tanskey, L.A., Goldberg, J.P., Chui, K., Must, A., Wright, C.M. & Sacheck, J.M. (2019). A qualitative exploration of potential determinants of accelerated summer weight gain among school-age children: perspectives from parents. BMC Pediatrics, 19, 438. https://doi.org/10.1186/s12887-019-1813-z

Tanskey, L.A., Goldberg, J., Chui, K., Must, A. & Sacheck, J. (2018). The state of the summer: a review of child summer weight gain and efforts to prevent it. Current Obesity Reports, 7 (2), 112-121. https://doi.org/10.1007/s13679-018-0305-z

Verma, R., Chiang, J., Qian, H. & Amin, R. (2019). Maximal static respiratory and sniff pressures in healthy children - a systematic review and meta-analysis. Annals of American Thoracic Society, 16(4), 478-487. https://doi.org/10.1513/AnnalsATS.201808-506OC

Volmut, T., Pisot, R., Planinsec, J. & Simunic, B. (2021). Physical activity drops during summer holidays for 6- to 9-year old children. Frontiers in Public Health, 8, 631141. https://doi.org/10.3389/fpubh.2020.631141

Woo Hyuk, C., Myung Jun, S., Myung Hun, J., Je Sang, L., Soo-Yeon, K., Hye-Young, K., Younghee, H., Choongrak, K. & Yong Beom, S. (2017). Maximal inspiratory pressure and maximal expiratory pressure in healthy Korean children. Annals of Rehabilitation Medicine, 41 (2), 299-305. https://doi.org/10.5535/arm.2017.41.2.299

Zacca, R., Toubekis, A., Freitas, L., Silva, A.F., Azevedo, R., Vilas-Boas, J.P., Pyne, D.B., Castro, F.A. & Fernandes, R.J. (2019). Effects of detraining in age-group swimmers performance, energetics and kinematics. Journal of Sports Sciences, 37(13), 1490-1498. https://doi.org/10.1080/02640414.2019.1572434