Contido principal do artigo

Samira Hernández
Department of Agroforestry Engineering, Higher Polytechnic Engineering School. University of Santiago de Compostela, 27002 Lugo, Spain
España
Jorge Dafonte
Department of Agroforestry Engineering, Higher Polytechnic Engineering School. University of Santiago de Compostela, 27002 Lugo, Spain
España
https://orcid.org/0000-0003-4305-1521
Vol. 46 (2024), Artigos, Páxinas 17-32
DOI: https://doi.org/10.17979/cadlaxe.2024.46.11360
Recibido: out. 31, 2024 Aceptado: dec. 11, 2024 Publicado: dec. 20, 2024
##submission.copyright## ##submission.howToCite##

Resumo

Galicia's (NW Spain) diverse climate, driven by various factors, exhibits significant spatial and temporal variability, directly affecting the region's economy and society. Taking this into account, it is of great importance to have climate observation networks that cover most of the territory, and in the case of not having them, to have tools that allow the estimation of climate parameters.


The main tools used for the estimation of parameters in unmeasured locations are climate database and the interpolation of data from climate stations, with kriging being one of the most widely used interpolation methods.


The evaluation of climatic database is very important to establish how well they estimate the parameters and to ensure that they result in a homogeneous data series. For this purpose, in the present study a comparison was made of point data from the MeteoGalicia weather station network with data extracted from the SIMPA, AEMET and ERA5 databases and with data resulting from interpolation using regression kriging methods. The climatic parameters for which data were used for the study are: mean temperature, precipitation and reference potential evapotranspiration (Eto).


To extract the data from SIMPA, ERA5 and AEMET and to interpolate point data from MeteoGalicia, we worked with the statistical programming environment R. After extracting the data or interpolating them, they were compared with the data measured in the MeteoGalicia network of climatological stations using the Nash-Sutcliffe index.


The results of this study seek to conclude which method is more effective for estimating each of the parameters studied. In general, the predictions based on interpolation (AEMET and regression kriging) presented the best goodness of fit, while SIMPA also presented good results for some parameters. In general, the parameters with the best estimation results were mean temperature, followed by precipitation and finally potential evapotranspiration.

Descargas

Os datos de descargas todavía non están dispoñibles.

Detalles do artigo

Citas

AEMET. n.a. Datos en rejilla de 5 Km ROCIO_IBEB y 2.5 Km ROCIO+_CAN. Ministerio para la transición ecológica y el reto demográfico. https://www.aemet.es/es/serviciosclimaticos/cambio_climat/datos_diarios/ayuda/rejilla_5km

Andrade, M.F., Blacutt, L.A.B. 2010. Evaluación del modelo climático regional preciso para el área de Bolivia: comparación con datos de superficie. Revista Boliviana de Física 17 (17), 1-12. http://www.scielo.org.bo/scielo.php?pid=S1562-38232010000100001&script=sci_arttext

Castillo, F.R., Martínez, A.C., Blanco, R.C. 2006. O clima de Galicia. In: NARANJO, L. & PÉREZ, V.M., A variabilidade natural do clima en Galicia, pp 17-92). MeteoGalicia, Consellería de Medio Ambiente e Desenvolvemento Sostible e Fundación Caixa Galicia. https://www.MeteoGalicia.gal/datosred/infoweb/meteo/docs/publicacions/libros/Variabilidade_Natural_Clima.pdf

Hengl, T. 2009. A practical guide to geostatistical mapping on environmental variables. Office for Official Publications of the European Communities, Luxembourg. https://publications.jrc.ec.europa.eu/repository/handle/JRC38153

Hijmans, R. 2023. raster: Geographic Data Analysis and Modeling_. R package version 3.6-26. https://CRAN.R-project.org/package=raster

Matheron, G. 1971. The Theory of Regionalized Variables and Its Applications. Technical Report 5, Paris School of Mines. Les Cahiers du Centre de Morphologie Mathématique De Fontainebleau, Paris. https://cg.ensmp.fr/bibliotheque/public/MATHERON_Ouvrage_00167.pdf

McCuen, R., Knight, Z., Cutter, A. 2006. Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering 11(6), 597-602. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597) DOI: https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)

Ministerio para la transición ecológica y el reto demográfico, centro de estudios y experimentación de obras públicas. 2020. Evaluación de recursos hídricos en régimen natural en España (1940/41 – 2017/18). Madrid. https://www.miteco.gob.es/content/dam/miteco/es/agua/temas/evaluacion-de-los-recursos-hidricos/cedex-informeerh2019_tcm30-518171.pdf

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007 Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE 50, 885–900. https://elibrary.asabe.org/abstract.asp?aid=23153 DOI: https://doi.org/10.13031/2013.23153

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., Thépaut, J.-N. 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth System Science Data 13, 4349–4383. https://doi.org/10.5194/essd-13-4349-2021 DOI: https://doi.org/10.5194/essd-13-4349-2021

Payne, M. R. 2023. ClimateOperators: Climate Operators for R. R package version 0.3.2. https://github.com/markpayneatwork/ClimateOperators

Pebesma, E.J. 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30, 683–691. http://dx.doi.org/10.1016/j.cageo.2004.03.012 DOI: https://doi.org/10.1016/j.cageo.2004.03.012

Rangel, R. 2019. Determinación de la cantidad de recursos hídricos para la gestión a nivel de cuenca por modelación. Estudio de aplicación a las cuencas de Río Cabe (Lugo) y Río Colorado (B. C., México). Ph D Thesis. University of Santiago de Compostela. https://minerva.usc.es/entities/publication/958bfb91-a9ad-4edc-8016-9b957c421eee

Rossiter, D. G. 2024. An introduction to (geo)statistics with R. Cornell University, Section of Soil & Crop Sciences. https://www.css.cornell.edu/faculty/dgr2/_static/files/R_PDF/gs_intro_sf.pdf

Rossiter, D. G. 2022. Conceptual basis of geostatistics. Cornell University, Section of Soil & Crop Sciences, Nanjing Normal University, Geographic Sciences Department. https://www.css.cornell.edu/faculty/dgr2/_static/files/ov/GeostatVeryShortLecture_Handout.pdf

Schulzweida, U. 2023. CDO User Guide (2.3.0). Zenodo. https://zenodo.org/records/10020800

Sekulić, A., Kilibarda, M., Heuvelink, G.B. M., Nikolić, M., Bajat, B. 2020. Random Forest Spatial Interpolation. Remote Sensing 12(10), 1687. https://doi.org/10.3390/rs12101687 DOI: https://doi.org/10.3390/rs12101687

Siles, G.S. 2022. Reanálisis climatológico ERA5: una revisión sobre su uso en el cálculo de atenuación atmosférica en sistemas de comunicaciones satelitales. Investigación & Desarrollo 22 (1), 145–159. https://doi.org/10.23881/idupbo.022.1-12i DOI: https://doi.org/10.23881/idupbo.022.1-12i

Terradellas, E. 2008. Estimación de parámetros de la distribución estadística de temperatura medias mensuales a partir de ficheros de datos incompletos. Acta de las Jornadas Científicas de la Asociación Meteorológica Española 30. http://hdl.handle.net/20.500.11765/1361

Zhang, Y. 2011. Introduction to Geostatistics – Course Notes. Dept. Of Geology & Geophysics, University of Wyoming. https://geofaculty.uwyo.edu/yzhang/files/Geosta1.pdf