Main Article Content

Juan Ramón Vidal-Romaní
Instituto Universitario de Xeoloxía, Universidade da Coruña, España
Spain
https://orcid.org/0000-0001-7158-4945
Carlos Arce Chamorro
Instituto Universitario de Xeoloxía, Universidade da Coruña, España
Spain
https://orcid.org/0000-0001-5374-5485
Daniel Fernández Mosquera
Instituto Universitario de Xeoloxía, Universidade da Coruña, España
Spain
Vol. 44 (2022), Articles, pages 33-54
DOI: https://doi.org/10.17979/cadlaxe.2022.44.0.9405
Submitted: Dec 1, 2022 Accepted: Dec 28, 2022 Published: Dec 28, 2022
How to Cite

Abstract

Historically, the greatest difficulty in geomorphology work has been the absolute dating of geomorphological surfaces, which reaches its maximum when the surface lacks any type of coating. It is then that the only criterion is either the creative imagination or the use of stable cosmogenic isotopes and, failing that, of radioactive ones, since as long as the stability of a surface can be guaranteed, the method will give an absolute age for the surface. Dating has different precision depending on which isotope is used. In the case of stable cosmogenics there is no age limitation, although in others (radioactive cosmogenics) it would be limited by the half-life of the isotope used. The detailed analysis of the geological and geomorphological history of the analyzed surface should never be neglected, more than in any other type of dating.

Downloads

Download data is not yet available.

Article Details

References

Alvarez-Marrón J., Hetzel, R., Niedermann, S., Menendez, R., Marquínez, J. (2008). Origin, structure and exposure history of a wave-cut platform more than Ma in age at the coast of northern Spain: A multiple cosmogenic nuclide approach. Geomorphology 93, 316–334. https://doi.org/10.1016/j.geomorph.2007.03.005

Anderson, R.S., Repka, J.L., Dick, G.S. (1996) Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology 24, 47–51. https://doi.org/10.1130/0091-7613(1996)024<0047:ETOIID>2.3.CO;2

Andrés N., Gómez-Ortíz, A., Fernández-Fernandez, J.M., Tanarro, L., Salvador-Franch, F., Oliva, M., Palacios, D. (2018) Timing of deglaciation and rock glacier origin in the southeastern Pyrenees: a review and new data. Boreas 47 (4), 1050–1071. https://doi.org/10.1111/bor.12324

Balco, G., Stone, J.O., Jennings, C. (2005) Dating Plio-Pleistocene glacial sediments using the cosmic-ray-produced radionuclides 10Be and 26Al. American Journal of Science 305, 1–41. https://doi.org/10.2475/ajs.305.1.1

Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J. (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–195. https://doi.org/10.1016/j.quageo.2007.12.001

Bierman, P.R., Turner, J. (1995) 10Be and 26Al evidence for exceptionally low rates of Australian bedrock erosion and the likely existence of Pre- Pleistocene landscapes. Quaternary Research 44, 378–382. https://doi.org/10.1006/qres.1995.1082

Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., Brook, E.J. (1991) Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochimica et Cosmochimica Acta 55, 2269–2283. https://doi.org/10.1016/0016-7037(91)90103-C

Cerling, T., Craig, H. (1994) Cosmogenic 3He production rates from 39°N to 46°N latitude, western USA and France. Geochimica et Cosmochimica Acta 58, 249–255. https://doi.org/10.1016/0016-7037(94)90462-6

Carrasco, R. M., Pedraza, J., Domínguez-Villar, D., Villa, J., Willenbring, J. K. (2013) The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology 196, 83–93. https://doi.org/10.1016/j.geomorph.2012.03.019

Carrasco, R. M., Pedraza, J., Domínguez-Villar, D., Willenbring, J. K., Villa, J. (2015) Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quaternary Science Reviews 129, 163–177. https://doi.org/10.1016/j.quascirev.2015.09.021

Craig, H., Poreda, R.J. (1986) Cosmogenic 3He in terrestrial rocks: The summit lavas of Maui. Proceedings of the National Academy of Science U.S.A. 83, 1970–1974. https://doi.org/10.1073/pnas.83.7.1970

Darvil, C.M. (2013) Cosmogenic nuclide analysis. In: Geomorphological Techniques. London, UK. British Society for Geomorphology. p. 1–25.

Davis, P.T., Bierman, P., Marsella, K.A. Cafee, M.W., Southon, J.R. (1999) Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic; a test for inherited nuclides and the effectiveness of glacial erosion. Annals of Glaciology 28, 181–188. https://doi.org/10.3189/172756499781821805

Davis, M., Matmon, A., Fink, D., Ron, H., Niedermann, S. (2011) Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel — Implications for cosmogenic burial dating. Earth and Planetary Science Letters 305, 317–327 https://doi.org/10.1016/j.epsl.2011.03.003

Desilets, D., Zreda, M., Trabu, T. (2006) Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude. Earth and Planetary Science Letters 246, 265–276. https://doi.org/10.1016/j.epsl.2006.03.051

Dunai, T. (2001) Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, 197–212. https://doi.org/10.1016/S0012-821X(01)00503-9

Dunai, T. (2010) Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, p. 187.

Dunne, J., Elmore, D., Mizikar, P. (1999) Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 3–12. https://doi.org/10.1016/S0169-555X(98)00086-5

Fernández Mosquera, D., Marti,K., Vidal-Romani J.R., Weigel, A. (2000) Late Pleistocene deglaciation chronology in the NW of the Iberian Peninsula using cosmic-ray produced 21Ne in quartz. Nuclear Instruments and Methods in Physics Research B 172, 832–837. https://doi.org/10.1016/S0168-583X(00)00339-6

Finkel, R.C., Suter, M. (1993) AMS in the Earth Sciences: technique and applications. Advances in Analytical Geochemistry 1, 1–114.

Fujioka, T., Chappell, J. (2011) Desert landscape processes on a timescale of millions of years, probed by cosmogenic nuclides. Aeolian Research 3, 157–164 https://doi.org/10.1016/j.aeolia.2011.03.003

Gosse, J.C., Phillips, F.M. (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 1475–1560. https://doi.org/10.1016/S0277-3791(00)00171-2

Granger, D.E., Muzikar, P.F. (2001) Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth and Planetary Science Letters 188, 269–281. https://doi.org/10.1016/S0012-821X(01)00309-0

Granger, D.E., Lifton, N.A. Willenbring, J.K. (2013) A cosmic trip: 25 years of cosmogenic nuclides in geology. Geological Society of America Bulletin 125, 1379–1402. https://doi.org/10.1130/B30774.1

Guyodo, Y., Valet, J.P. (1999) Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature 399, 249–252. https://doi.org/10.1038/20420

Hancock, G.S., Anderson, R.S., Chadwick, O.A., Finkel, R.C. (1999) Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming. Geomorphology 27, 41–60. https://doi.org/10.1016/S0169-555X(98)00089-0

Handwerger, D.A., Cerling, T.E., Bruhn, R.L. (1999) Cosmogenic 14C in carbonate rocks. Geomorphology 27, 13–24.https://doi.org/10.1016/S0169-555X(98)00087-7

Ivy-Ochs, S., Kober, F. (2008) Surface exposure dating with cosmogenic nuclides. Eiszeitalter und Gegenwart, Quaternary Science Journal 57, 179–209, https://doi.org/10.3285/eg.57.1-2.7

Kurth, G., Phillips, F., Reheis, M., Redwine, J., Paces, J. (2011) Cosmogenic nuclide and uranium-series dating of old, high shorelines in the western Great Basin, USA. Geological Society of America Bulletin 123, 744–768. https://doi.org/10.1130/B30010.1

Kohl, C.P., Nishiizumi, K. (1992) Chemical isolation of quartz for measurement of in-situ produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 3583–3587. https://doi.org/10.1016/0016-7037(92)90401-4

Kurz, M.D. (1986) In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochimica et Cosmochimica Acta 50, 2855–2862. https://doi.org/10.1016/0016-7037(86)90232-2

Kurz, M., Colodner, D., Trull, T., Moore, R., O´Brien, K. (1990) Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows. Earth and Planetary Science Letters 97, 177–189. https://doi.org/10.1016/0012-821X(90)90107-9

Lal, D., Peters, B. (1967) Cosmic ray produced radioactivity on the Earth. Handbuch der Physik. pp 551–612.

Lal, D. (1987). Cosmogenic nuclides produced in situ in terrestrial solids. Nuclear Instruments and Methods in Physics Research B 29, 238–245. https://doi.org/10.1016/0168-583X(87)90243-6

Lal, D. (1988) In situ-produced cosmogenic isotopes in terrestrial rocks. Annual Review of Earth and Planetary Sciences 16, 355–388. https://doi.org/10.1146/annurev.ea.16.050188.002035

Lal, D. (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424–439. https://doi.org/10.1016/0012-821X(91)90220-C

Lifton, N., Jull, A.J., Quade, J. (2001). A new extraction technique and production rate estimate for in situ cosmognic 14C in quartz. Geochimica et Cosmochimica Acta 65(12), 1953–1969. http://doi.org/10.1016/S0016-7037(01)00566-X

Marti, K., Craig, H. (1987) Cosmic-ray-produced neon and helium in the summit lavas of Maui. Nature 325, 335–337. https://doi.org/10.1038/325335a0

Mackey, B., Lamb, M. (2013) Deciphering boulder mobility and erosion from cosmogenic nuclide exposure dating. Journal of Geophysical Research. Earth Surface 118, 184–197. https://doi.org/10.1002/jgrf.20035

Matmon, A., Ron, H., Chazan, M., Porat, N., and Horwitz, L.K. (2012) Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave, South Africa. Geological Society of America Bulletin 124, 611–625. https://doi.org/10.1130/B30410.1

Mitchel, S.G., Matmon, A., Bierman, P.R., Enzel, Y., Caffee, M., Rizzo, D. (2001) Displacement history of a limestone normal fault scarp, northern Israel, from cosmogenic 36Cl. Journal of Geophysical Research. Solid Earth 106, 4247–4264. https://doi.org/10.1029/2000JB900373

Niedermann, S., Graf, T., Marti, K. (1993) Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth and Planetary Science Letters 118, 65–73. https://doi.org/10.1016/0012-821X(93)90159-7

Nishiizumi, K., Winterer, E., Kohl, C., Klein, J., Middleton, R., Lal, D., Arnold, J. (1989) Cosmic ray production rates of 26Al and 10Be in quartz from glacially polished rocks. Journal of Geophysical Research 94, 17907–17915. https://doi.org/10.1029/JB094iB12p17907

Nishiizumi, K., Kohl, C.P., Shoemaker, E.M., Arnold, J.R., Klein, J., Fink, D., Middleton, R. (1991) In situ 10Be - 26Al exposure ages at Meteor Crater, Arizona. Geochimica et Cosmochimica Acta 55, 2699–2703. https://doi.org/10.1016/0016-7037(91)90388-L

Pallás, R., Rodés, A., Braucher, R., Carcaillet, J., Ortuño, M., Bordonau, J., Bourlés,D. ,Vilaplana, J. M., Masana,E., Santanach, P. (2006) Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, southcentral Pyrenees. Quaternary Science Reviews 25, 2937–2963. https://doi.org/10.1016/j.quascirev.2006.04.004

Phillips, F.M., Zreda, M.G., Smith, S.S., Elmore, D., Kubik, P.W., Dorn, R.I., Roddy, D.J. (1991) Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochimica et Cosmochimica Acta 55, 2695–2698. https://doi.org/10.1016/0016-7037(91)90387-K

Phillips, W.M., McDonald, E.V., Reneau, S.L., Poths, J. (1996) Resolving inherited cosmogenic nuclides in soils: a case study from the Pajarito Plateau: New Mexico, USA. Geological Society of America Abstracts with Programs 28 (7), A180.

Phillips, W.M., McDonald, E.V., Reneau, S.L. Poths, J. (1998) Dating soils and alluvium with cosmogenic 21Ne depth profiles: Case studies from the Pajarito Plateau, New Mexico, USA. Earth and Planetary Science Letters 160, 209–223. https://doi.org/10.1016/S0012-821X(98)00076-4

Repka, J.K., Anderson, R.S. Finkel, R.C. (1997) Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth and Planetary Science Letters 152, 59–73. https://doi.org/10.1016/S0012-821X(97)00149-0

Sanjurjo J., Fernández Mosquera, D. & Vidal Romaní J. R. (2009). Assessing the age-weathering correspondence of cosmogenic 21Ne dated Pleistocene surfaces by the Schmidt Hammer. Earth Surface Processes and Landforms 34, 1121–1125. https://doi.org/10.1002/esp.1802

Small, E.E., Anderson, R.S., Repka, J.L., Finkel, R. (1997) Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al. Earth and Planetary Science Letters 150, 413–425. https://doi.org/10.1016/S0012-821X(97)00092-7

Stone, J.O. (2000) Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 23753–23759. https://doi.org/10.1029/2000JB900181

Vermeesch, P. (2007) CosmoCalc: An Excel add-in for cosmogenic nuclide calculations. Geochemistry Geophysics Geosystems 8: Q08003. https://doi.org/10.1029/2006GC001530

Vidal-Romaní, J.R., Fernández-Mosquera, D., Marti, K. (2015) The glaciation of Serra de Queixa-Invernadoiro and Serra do Geres-Xurés, NW Iberia. A critical review and a cosmogenic nuclide (10-Be and 21-Ne) chronology. Cadernos do Laboratorio Xeolóxico de Laxe 38, 25–44. https://doi.org/10.17979/cadlaxe.2015.38.0.3681

Viveen, W., Braucher, R., Bourlès, D., Schoorl, J.M., Veldkamp, A., van Balen, R.T., Wallinga, J., Fernández-Mosquera, D., Vidal-Romaní, J.R., Sanjurjo-Sánchez, J. (2012) A 0.65 Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Global Planetary Change 94–95, 82–100. https://doi.org/10.1016/j.gloplacha.2012.07.001

Yang, Y., Liu, Y., Ma, Y., Xu, S., Liu, CQ., Wang, SJ., Stuart, FM., Fabel, D. (2021) In situ cosmogenic 10Be, 26Al and 21Ne dating in sediments from the Guizhou Plateau, southwest China. Science China Earth Science 64, 1305–1317. https://doi.org/10.1007/s11430-020-9744-6