Sediment Beta-microdose variability as main cause of dispersion in OSL-quartz dating of Upper-Pleistocene coastal fluvial-deposits preserved at Mero-River Basin (A Coruña, Galicia, Spain)
Main Article Content
Abstract
In this work, we have estimated the equivalent dose (De) from the OSL signal from quartz, for fluvial deposits of the Upper Pleistocene in the Mero River basin (A Coruña, Galicia, Spain) and preserved in the Ria of Coruña coastal margin (NW Iberian Peninsule). Such deposits show De distributions more scattered than expected, providing unexpected high over-dispersion percentages of the mean (OD> 20%). These values are usually correlated to incomplete-bleaching of the OSL signal due to the transport of quartz grains under turbulent conditions as a consequence of high suspended sediment loads. However, both distribution plots and normality-test show normal, symmetric and central distributions. No evidence of two or more populations in aliquots due to two groups of grains, namely y (i) one group of grains with well-bleached signals before the last burial event and (ii) another group of grains which an inherited signal from a previous burial episode. Moreover, Dose-Recovery experiments on quartz grains show that the high dispersion is due to external and not internal factors. Thus, we have analyzed the activity concentration of radioisotopes in samples and the concentration of potassium in several grain-sizes, to assess if the origin of over-dispersion is microdosimetry caused by 40K from potassium, given the low dose rates (Dr) measured in samples. Results show that this is the most probable cause of dispersion, and no evidence of partial bleaching is found.
Keywords:
Downloads
Article Details
References
Aitken M.J., Smith, B.W., 1988. Optical dating: recuperation after bleaching. Quaternary Science Reviews 7, 387-394. https://doi.org/10.1016/0277-3791(88)90034-0
Arce-Chamorro, C., 2017. Datación por luminiscencia de depósitos fluviales y eólicos en el margen occidental de Galicia. Tesis Doctoral. Universidade da Coruña.
Arenas, R., Díaz-García, F., Martínez-Catalán, J.R., Abati, J., González-Cuadra, P., Andonaegui, P., González del Tánago, J., Rubio-Pascual, F., Castiñeiras, P., Gómez-Barreiro, J., 2000. Structure and evolution of the Ordenes Complex. Basement Tectonics 15, Pre-Conference Field Trip. A Coruña, Spain.
Arnold, L.J., Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204-230. https://doi.org/10.1016/j.quageo.2008.12.001
Ballarini, M., Wallinga, J., Wintle, A.G., Bos, A.J.J., 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42, 360-369. https://doi.org/10.1016/j.radmeas.2006.12.016
Bailey, R.M., Smith, B.W., Rhodes, E.J., 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements 27, 123-136. https://doi.org/10.1016/S1350-4487(96)00157-6
Banerjee, D., Botter-Jensen, L., Murray, A.S., 2000. Retrospective dosimetry: estimation of the dose to quartz using the single-aliquot regenerative-dose protocol. Applied Radiation and Isotopes 52, 831-844. https://doi.org/10.1016/S0969-8043(99)00247-X
Bastida, F., Marcos, A., Marquínez, J., Catalán, J.R., Pérez-Estaún, A., Pulgar, J., 1984. Mapa Geológico de España, E 1:200000, Hoja nº 2-1, La Coruña.
Bickel, L., Lüthgens, C., Lomax, H., Fiebig, M., 2014. Luminescence dating of glaciofluvial deposits linked to the penultimate glaciation in the Eastern Alps. Quaternary International, 357, 110-124. https://doi.org/10.1016/j.quaint.2014.10.013
Bøtter-Jensen, L., Thomsen, K.J., Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45, 253-257. https://doi.org/10.1016/j.radmeas.2009.11.030
Boyle, R.W., 1982. Geochemical prospecting for thorium and uranium deposits. Elsevier, New York, 489pp.
Brennan, B.J., 2003. Beta doses to spherical grains. Radiation Measurements 37, 299-303. https://doi.org/10.1016/S1350-4487(03)00011-8
Buckland, C., Bailey, R. , Thomas, D., 2019. Using post-IR IRSL and OSL to date young (<200 yrs) dryland aeolian dune deposits. Radiation Measurements, 126;106-131. https://doi.org/10.1016/j.radmeas.2019.106131
Burbidge, C.I., Duller, G.A.T., Roberts, H.M., 2006. De determination for young samples using the standardised OSL response of coarse-grain quartz. Radiation Measurements 41, 278–288. https://doi.org/10.1016/j.radmeas.2005.06.038
CSN, 2000. Proyecto Marna. Mapa de radiación gamma natural. Consejo de Seguridad Nuclear. Madrid.
Cunha, P.P., Martins, A.A., Huot, S., Murray, A., Raposo, L., 2008. Dating the Tejo river lower terraces in the Rodão area (Portugal) to assess the role of tectonics and uplift. Geomorphology 102, 43-54. https://doi.org/10.1016/j.geomorph.2007.05.019
Cunningham, A. C., Wallinga, J., 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology 5, 657-666. https://doi.org/10.1016/j.quageo.2010.08.004
Duller, G. A. T., 2004. Luminescence dating of Quaternary sediments: Recent advances. Journal of Quaternary Science 19, 183–192. https://doi.org/10.1002/jqs.809
Duller, G.A.T., 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589-612. https://doi.org/10.1111/j.1502-3885.2008.00051.x
Duller, G.A.T., 2012. Improving the accuracy and precision of equivalent doses determined using the optically stimulated luminescence signal from single grains of quartz. Radiation Measurements 47, 770-777. https://doi.org/10.1016/j.radmeas.2012.01.006
Engels, J.P., 1974. Precambrian complexes in the hercynian of the North-Western Peninsula. Conference Liblice “Precambrian des zones mobiles de l´Europe”. 1972.
Escuer-Sole, J., Vidal-Romaní, J.R., 1987. Facies y modelo local de los depósitos aluviales de la cuenca del río Mero y península de Sada (A Coruña, Galicia, NW Spain). Cuaderno do Laboratorio Xeolóxico de Laxe 11, 69-83.
Feathers, J.K., Pagonis, V., 2015. Dating quartz near saturation – Simulations and application at archaeological sites in South Africa and South Carolina. Quaternary Geochronology 30, 416-421. https://doi.org/10.1016/j.quageo.2014.12.008
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339-364. https://doi.org/10.1111/j.1475-4754.1999.tb00987.x
Gascoyne, M., 1992. Geochemistry of the actinides and their daughters. In: Ivanovich, M., Harmon, R.S. (eds.) Uranium-series disequilibrium: applications to Earth, marine, and environmental sciences. Clarendon Press, Oxford, pp. 34-61.
Hardt, J., Lüthgens, C., Hebenstreit, R., Böse, M., 2016. Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice marginal position in northeast Germany. Quaternary Science Reviews 154, 85-99. https://doi.org/10.1016/j.quascirev.2016.10.015
Heer, A., Adamiec, G., Moska, P., 2012. How many grains are there on a single aliquot? Ancient TL. 30. 9-16.
Ivanovich, M., Harmon, R.S. (eds) 1982. Uranium series desequilibrium: Applications to Earth, Marine and Environmental Sciences (2nd Ed.) Clarendon Press, Oxford. 910 pp.
Jain, M., Murray, A. S., Bøtter-Jensen, L., 2003. Characterisation of blue-light stimulated luminescence components in different Quartz samples: implications for dose measurement. Radiation Measurements 37, 441–449. https://doi.org/10.1016/S1350-4487(03)00052-0
Martins, A.A., Cunha, P.P., Buylaert J.-P., Huot, S., Murray, A.S., Dinis, P., Stokes, M., 2010. K-Feldspar IRSL dating of a Pleistocene river terrace staircase sequence of the Lower Tejo River (Portugal, western Iberia). https://doi.org/10.1016/j.quageo.2009.06.004
Medialdea, A., 2013. Towards the reconstruction of Floyd histories: Luminiescence dating of palaeoflood deposits. Universidad Autónoma de Madrid. Tesis doctoral.
Murray, A.S., Wintle, A.G., 1999. Isothermal decay of optically stimulated luminescence in quartz. Radiation Measurements 30, 119–125. https://doi.org/10.1016/S1350-4487(98)00097-3
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single- aliquot regenerative-dose protocol. Radiation Measurements 32, 57-73. https://doi.org/10.1016/S1350-4487(99)00253-X
Muñoz-Salinas, E., Castillo, M., Caballero. L., Lacan, P., 2017. Understanding landscape dynamics of the Sierra Juarez, southern Mexico: An exploratory approach using inherited luminescence signals. Journal of South American Earth Sciences 76, 208-217. https://doi.org/10.1016/j.jsames.2017.03.001
Nathan, R., Thomas, P.J., Murray, A.S., Rhodes, E.J., 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37, 305–313. https://doi.org/10.1016/S1350-4487(03)00008-8
Olley, J. M., Caitcheon, G. G., Roberts, R. G., 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30, 207–217. https://doi.org/10.1016/S1350-4487(99)00040-2
Oczkowski, H.L., Przegietka, K.R., Lankauf, K.R., Smanda, J.B., 2000. Gamma spectrometry in thermoluminescence dating. Geochronometría, 18. 57-62.
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contribution to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497–500. https://doi.org/10.1016/1350-4487(94)90086-8
Przegiętka, K., Chruścińska, A., 2013. Analysis of Optical Bleaching of OSL Signal in Sediment Quartz. Radiation Measurements 56, 257-261. https://doi.org/10.1016/j.radmeas.2013.02.009
Ramos, A.M., Cunha, P.P., Cunha, L.S., Gomes, A., Lopes, F.C., Buylaert, J.P., Murray, A.S., 2012. The River Mondego terraces at the Figueira da Foz coastal area (western central Portugal): Geomorphological and sedimentological characterization of a terrace staircase affected by differential uplift and glacio-eustasy. Geomorphology 165-166, 107-123. https://doi.org/10.1016/j.geomorph.2012.03.037
Rhodes, E.J., 2000. Observations of thermal transfer OSL signals in glacigenic quartz. Radiation Measurements 35, 595–602. https://doi.org/10.1016/S1350-4487(00)00125-6
Ribeiro, H., Pinto De Jesus, A., Sanjurjo-Sánchez, J., Abreu, I., Vidal-Romaní, J.R., Noronha, F., 2019. Multidisciplinary study of the quaternary deposits of the Vila Nova de Gaia, NW Portugal, and its climate significance.J Iber Geol 45,553–563. https://doi.org/10.1007/s41513-019-00109-9
Rittenour, T.M., 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37, 613-635. https://doi.org/10.1111/j.1502-3885.2008.00056.x
Roberts, R.G., Spooner, N.A., Questiaux D.G., 1994. Palaeodose underestimates caused by extended duration preheats in the optical dating of quartz. Radiation Measurements 23, 647-653. https://doi.org/10.1016/1350-4487(94)90114-7
Rodnight, H., Duller, G.A.T., Wintle, A.G., Tooth, S., 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology 1, 109-120. https://doi.org/10.1016/j.quageo.2006.05.017
Sanjurjo-Sánchez, J., Vidal Romaní, J.R., 2011. Luminiescence Dating of Pseudokarst Speleothems: A first approach. Spetroscopy Letters 44, 1-6. https://doi.org/10.1080/00387010.2011.610422
Sanjurjo-Sánchez, J., Vidal Romaní, J.R., 2013. Problemas nuevos y procedimientos de datación por OSL para los sedimentos litorales del NO de la Península Ibérica. VII Jornadas de Geomorfología Litoral, Oviedo, España. Geotemas 14, 47-50.
Singarayer, J.S., Bailey, R.M., 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37, 451–458. https://doi.org/10.1016/S1350-4487(03)00062-3
Thomsen, K.J., Murray, A.S., Bøtter-Jensen, L., Jungner, H., 2003. Variation with depth of dose distributions in single grains of quartz extracted from an irradiated concrete block. Radiation Measurements 37, 315-321. https://doi.org/10.1016/S1350-4487(03)00006-4
Thomsen, K.J., Murray, A.S., Bøtter-Jensen, L., 2005. Sources of variability in OSL dose measuremnts using single grains of Quartz. Radiation measurements 39, 47-61. https://doi.org/10.1016/j.radmeas.2004.01.039
Trauerstein, M., Lowick, S.E., Preusser, F., Schlunegger, F., 2014. Small aliquot and single grain IRSL and post-IR IRSL dating of fluvial and alluvial sediments from the Pativilca valley, Peru. Quaternary Geochronology 22, 163-174. https://doi.org/10.1016/j.quageo.2013.12.004
Trinidade, M.J., Prudêncio, M.I., Sanjurjo-Sánchez, J., Vidal-Romaní, J.R., Ferraz, T., Fernández-Mosquera, D., Dias, M.I., 2013. Post-depositional processes of elemental enrichment inside dark nodular masses of an ancient aeolian dune from A Coruña, Northwest Spain. Geologica Acta 11, 231-244. https://doi.org/10.1344/105.000001838
Truelsen, J.L., Wallinga, J., 2003. Zeroing of the OSL signal as function of grain size: investigating bleaching and thermal transfer for a young fluvial sample. Geochronometria 22, 1-8.
Viveen, W., Schoorl, J.M., Veldkamp, A., van Balen, R.T., Vidal-Romaní, J.R., 2013. Fluvial terraces of the northwest Iberian lower Miño River. Journal of Maps, 9:4, 513-522. https://doi.org/10.1080/17445647.2013.821096
Wallinga, J., Murray, A., Wintle A., 2000. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32, 529-533. https://doi.org/10.1016/S1350-4487(00)00091-3
Wentworth, C.K., 1922. A scale of grade class terms for clastic sediments. Journal of Geology 30, 377-392.
Wintle, A.G., 2008. Luminescence dating: where it has been and where it is going. Boreas 37, 471-482. https://doi.org/10.1111/j.1502-3885.2008.00059.x
Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369-391. https://doi.org/10.1016/j.radmeas.2005.11.001