Main Article Content

Daniel Cebrián-Robles
Universidad de Málaga
Spain
https://orcid.org/0000-0002-3768-1511
Francisco Rodríguez-Mora
Universidad de Málaga
Ángel Blanco-López
Universidad de Málaga
Vol. 3 No. 1 (2019), Innovation in science education, pages 85-93

DOI:

https://doi.org/10.17979/arec.2019.3.1.4623
Submitted: 2018-10-26 Published: 2019-02-01
How to Cite

Abstract

The contexts of daily life reinforce the interest to learn in the students while allow to apply the learning outside the classroom. In this paper, a proposal is presented to evaluate the argumentation capacity of students through the use of rubrics. The evaluation activities are part of a training program whose purpose is to transmit certain values ​​and knowledge about the consumption of bottled water, while working on scientific argumentation. Specifically, it shows a scheme of analysis of the difficulty of argumentation activities based on two aspects: the degree of familiarization of students with the scientific content involved in each of them and the origin of the evidence needed to build a scientific argument. Finally, a learning progression is proposed as a hypothesis to improve the capacity for scientific argumentation based on the data obtained with secondary students.

Article Details

References

Blanco-López, Á., España-Ramos, E., González-García, F. J., y Franco-Mariscal, A. J. (2015). Key aspects of scientific competence for citizenship: A Delphi study of the expert community in Spain. Journal of Research in Science Teaching, 52(2), 164-198.

Cebrián-Robles, D., Franco-Mariscal, A. J., y Blanco-López, Á. (2018). Preservice Elementary Science Teachers' Argumentation Competence: Impact of a Training Programme. Instructional Science, (Online first), 1-29.

Colucci-Gray, L., Camino, E., Barbiero, G., y Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90(2), 227-252.

España-Ramos, E., y Prieto-Ruz, T. (2010). Problemas socio-científicos y enseñanza-aprendizaje de las ciencias. Investigación en la escuela, (71), 17-24.

Ferrier, C. (2001). Bottled Water: Understanding a Social Phenomenon. AMBIO: A Journal of the Human Environment, 30(2), 118-119.

Gleick, P. H., y Cooley, H. S. (2009). Energy implications of bottled water. Environmental Research Letters: ERL [Web Site], 4(1), 014009.

Henderson, J. B., McNeill, K. L., González-Howard, M., Close, K., y Evans, M. (2018). Key challenges and future directions for educational research on scientific argumentation. Journal of Research in Science Teaching, 55(1), 5-18.

Jiménez-Aleixandre, M. P. (2010). 10 Ideas Clave. Competencias en argumentación y uso de pruebas (Vol. 12). Barcelona: Graó.

Klein, N. (2015). Esto lo cambia todo: el capitalismo contra el clima. Madrid: Paidós.

OECD. (2012). OECD environmental outlook to 2050: the consequences of inaction. Paris: OECD publishing.

Piasentin, F. B., y Roberts, L. (2017). What elements in a sustainability course contribute to paradigm change and action competence? A study at Lincoln University, New Zealand. Environmental Education Research, 24(5), 694-715.

Ratcliffe, M., y Grace, M. (2003). Science education for citizenship: Teaching socio-scientific issues. Maidenhead: McGraw-Hill Education.

Rodríguez-Mora, F., y Blanco-López, Á. (2012). Ideas y creencias de alumnos de educación secundaria sobre la presencia de cal en el agua de bebida. In G. Pinto y M. Martín (Eds.), Enseñanza y divulgación de la química y la física (pp. 197-204). Madrid: Garceta Grupo Editorial.

Rodríguez-Mora, F., y Blanco-López, A. (2015). ¿Por qué bebemos agua embotellada? Una propuesta para la enseñanza de la Física y Química en 3.º de ESO. En A. Blanco y T. Lupión (Eds.), La competencia científica en las aulas. Nueve propuestas didácticas (pp. 205-244). Santiago de Compostela: Andavira editora.

Rodríguez-Mora, F., y Blanco-López, Á. (2016). Diseño y análisis de tareas de evaluación de competencias científicas en una unidad didáctica sobre el consumo de agua embotellada para educación secundaria obligatoria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 279-300.

Royte, E. (2008). Bottlemania. How water went on sale and why we bought it. New York: Bloomsbury.

Sanmartí, N., Burgoa, B., y Nuño, T. (2011). ¿Por qué el alumnado tiene dificultad para utilizar sus conocimientos científicos escolares en situaciones cotidianas? Alambique: Didáctica de Las Ciencias Experimentales, (67), 62-69.

Simonneaux, L. (2008). Argumentation in socio-scientific contexts. In S. Erduran (Ed.), Argumentation in science education: perspectives from classroom-based research (pp. 179-199). Dordrecht: Springer.

Siribunnam, S., Nuangchalerm, P., y Jansawang, N. (2014). Socio-Scientific Decision Making in the Science Classroom. Online Submission, 5(4), 1777-1782.

Steffen, W., y Stafford Smith, M. (2013). Planetary boundaries, equity and global sustainability: why wealthy countries could benefit from more equity. Current Opinion in Environmental Sustainability, 5(3), 403-408.

Toulmin, S. E. (1958). The uses of argument (2003rd ed.). Cambridge: Cambridge University Press.