Fault diagnosis using residuals generation for anion exchange membrane water electrolyzer

Authors

  • Hamza Assia Universidad de Sevilla
  • Imad Zakaria Meftah Universidad de Sevilla
  • Pablo González Camacho Universidad de Sevilla
  • Meriem Belkedari Universidad de Sevilla
  • Kumars Rouzbehi Universidad de Sevilla
  • Juan Manuel Escaño González Universidad de Sevilla

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12267

Keywords:

AEM Water Electrolyzer, Fault Diagnosis, State-Space Modeling, Nonlinear Observers, Residual Generation

Abstract

Anion Exchange Membrane Water Electrolyzers (AEMWEs) are a promising technology for clean hydrogen production, yet they remain vulnerable to faults that can impair performance and safety. This paper presents a model-based fault diagnosis framework for AEMWEs using nonlinear observers and residual generation. A comprehensive nonlinear state-space model is
developed to capture the key electrochemical and transport dynamics of the system. A Luenberger-type nonlinear observer is designed to estimate the internal states, and a structured residual generation strategy is proposed to detect and isolate specific faults. The method is evaluated under three fault scenarios: a current actuator fault, a voltage sensor bias, and a hydrogen flow
sensor offset. Each fault is identified through distinct residual signatures, enabling reliable diagnosis. Simulation results validate the effectiveness of the proposed scheme, demonstrating its potential to enhance the operational reliability and safety of AEMWE systems.

References

Dickinson, E. J., Wain, A. J., 2020. The butler-volmer equation in electrochemical theory: Origins, value, and practical application. Journal of Electroanalytical Chemistry 872, 114145, dr. Richard Compton 65th birthday Special issue. URL: https://ww.sciencedirect.com/science/article/pii/S1572665720303283 DOI: https://doi.org/10.1016/j.jelechem.2020.114145

Ding, S. X., 2013. Model-based fault diagnosis techniques. Springer book. URL: https://link.springer.com/book/10.1007/978-1-4471-4799-2 DOI: 10.1007/978-1-4471-4799-2

Gomez Vidales, A., Millan, N. C., Bock, C., 2023. Modeling of anion exchange membrane water electrolyzers: The influence of operating parameters. Chemical Engineering Research and Design 194, 636–648. URL: https://www.sciencedirect.com/science/article/pii/S0263876223002940 DOI: https://doi.org/10.1016/j.cherd.2023.05.004

Muradov, N. Z., Veziro˘glu, T. N., 2008. “green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. International Journal of Hydrogen Energy 33 (23), 6804–6839. URL: https://www.sciencedirect.com/science/article/pii/S036031990801118X DOI: https://doi.org/10.1016/j.ijhydene.2008.08.054

Phillips, R., Edwards, A., Rome, B., Jones, D. R., Dunnill, C.W., 2017. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. International Journal of Hydrogen Energy 42 (38), 23986–23994. URL: https://www.sciencedirect.com/science/article/pii/ S0360319917330203 DOI: https://doi.org/10.1016/j.ijhydene.2017.07.184

Qayoom, A., Ahmad, M., Hussain, F., Qazi, A., Selvaraj, J., Zainul, R., Krismadinata, Abd Rahim, N., Atamurotov, F., Tran, T., Souayeh, B., Benti, N. E., 11 2024. Recent advances in anion exchange membrane technology for water electrolysis: a review of progress and challenges. Energy Science/& Engineering 12, 5328–5352. DOI: 10.1002/ese3.1938

Rizwan, M., Alstad, V., J¨aschke, J., 2021. Design considerations for industrial water electrolyzer plants. International Journal of Hydrogen Energy 46 (75), 37120–37136, international Symposium on Sustainable Hydrogen 2019. DOI: https://doi.org/10.1016/j.ijhydene.2021.09.018

Roy, A.,Watson, S., Infield, D., 11 2006. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers. International Journal of Hydrogen Energy 31, 1964–1979. DOI: 10.1016/j.ijhydene.2006.01.018

Shiva Kumar, S., Himabindu, V., 2019. Hydrogen production by pem water electrolysis – a review. Materials Science for Energy Technologies 2 (3), 442–454. URL: https://www.sciencedirect.com/science/article/pii/S2589299119300035 DOI: https://doi.org/10.1016/j.mset.2019.03.002

Downloads

Published

2025-09-01

Issue

Section

Control Inteligente