ADAMSim: PyBullet-Based Simulation Environment for Research on Domestic Mobile Manipulator Robots
DOI:
https://doi.org/10.17979/ja-cea.2025.46.12217Keywords:
Robot simulation, Digital twin, PyBullet, Real-to-Sim, Sim-to-Real, Mobile manipulatorAbstract
This paper introduces ADAMSim, a PyBullet-based simulation environment tailored for Ambidextrous Domestic Autonomous Manipulator (ADAM), developed to support research in navigation, manipulation, and learning for domestic robotics. The simulator accurately replicates the structure and behavior of the physical robot, enabling robust sim-to-real and real-to-sim algorithm transfer. ADAMSim follows a modular design, including navigation, arm and hand kinematics, perception, and ROS communication. This architecture allows synchronized operation between the real robot and its digital twin. Several example applications were developed, ranging from vision and grasping tasks to navigation and teleoperation, including experiments running both simulated and real robots simultaneously. Its open-source and flexible design makes ADAMSim a powerful tool for safe and reproducible algorithm development and experimentation in household robotics. The platform is also intended to support future research in indoor mapping, advanced manipulation learning, and educational projects, serving as a test bed.
References
Barber, R., Ortiz, F. J., Garrido, S., Calatrava-Nicolás, F. M., Mora, A., Prados, A., Vera-Repullo, J. A., Roca-González, J., Méndez, I., Mozos, Ó. M., 2022. A multirobot system in an assisted home environment to support the elderly in their daily lives. Sensors 22 (20), 7983.
Choi, S. H., Park, K.-B., Roh, D. H., Lee, J. Y., Mohammed, M., Ghasemi, Y., Jeong, H., 2022. An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation.Robotics and Computer-Integrated Manufacturing 73, 102258.
Collins, J., Chand, S., Vanderkop, A., Howard, D., 2021. A review of physics simulators for robotic applications. IEEE Access 9, 51416–51431.
Coumans, E., Bai, Y., 2021. Pybullet quickstart guide. ed: PyBullet Quick start Guide. https://docs. google. com/document/u/1/d.
Dan, P., Kedia, K., Chao, A., Duan, E. W., Pace, M. A., Ma, W.-C., Choudhury, S., 2025. X-sim: Cross-embodiment learning via real-to-sim-to-real. arXiv preprint arXiv:2505.07096.
Erez, T., Tassa, Y., Todorov, E., 2015. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx. In: International conference on robotics and automation (ICRA). IEEE, pp. 4397–4404.
Fernandez, N., Espinoza, G., Mendez, A., Prados, A., Mora, A., Barber, R., 2024. Data generation in simulated domestic environments for assistive robots. In: 2024 7th Iberian Robotics Conference (ROBOT). IEEE, pp. 1–6.
Fernandez, N., Espinoza, G., Mendez, A., Prados, A., Mora, A., Barber, R., 2025. Perspective chapter: Advanced environment modelling techniques for mobile manipulators. IntechOpen.
Lopez, B., Prados, A., Moreno, L., Barber, R., 2023. Taichi algorithm: Human-like arm data generation applied on non-anthropomorphic robotic manipulators for demonstration. In: 2023 European Conference on Mobile Robots (ECMR). IEEE, pp. 1–7.
Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A., Handa, A., et al., 2021. Isaac gym: High performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470.
Mendez, A., Prados, A., Menendez, E., Barber, R., 2024. Everyday objects re-arrangement in a human-like manner via robotic imagination and learning from demonstration. IEEE Access.
Mora, A., Prados, A., Mendez, A., Barber, R., Garrido, S., 2022. Sensor fusion for social navigation on a mobile robot based on fast marching square and gaussian mixture model. Sensors 22 (22), 8728.
Mora, A., Prados, A., Mendez, A., Espinoza, G., Gonzalez, P., Lopez, B., Mu˜noz, V., Moreno, L., Garrido, S., Barber, R., 2024. Adam: a robotic companion for enhanced quality of life in aging populations. Frontiers in Neurorobotics 18, 1337608.
Prados, A., Espinoza, G., Fernandez, N., Barber, R., 2024a. Imitation learning for low-cost dexterous hand using rgbd camera. In: 2024 7th Iberian Robotics Conference (ROBOT). IEEE, pp. 1–6.
Prados, A., Garrido, S., Barber, R., 2024b. Learning and generalization of task-parameterized skills through few human demonstrations. Engineering Applications of Artificial Intelligence 133, 108310.
Prados, A., Mendez, A., Espinoza, G., Fernandez, N., Barber, R., 2024c. f-divergence optimization for task-parameterized learning from demonstrations algorithm. In: 2024 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, pp. 9–14.
Prados, A., Mora, A., L´opez, B., Mu˜noz, J., Garrido, S., Barber, R., 2023. Kinesthetic learning based on fast marching square method for manipulation. Applied Sciences 13 (4), 2028.
Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., Nori, F., 2008. An open-source simulator for cognitive robotics research: the prototype of the icub humanoid robot simulator. In: Proceedings of the 8th workshop on performance metrics for intelligent systems. pp. 57–61.
Todorov, E., Erez, T., Tassa, Y., 2012. Mujoco: A physics engine for model based control. In: 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp. 5026–5033.
Wang, C., Zhang, Q., Tian, Q., Li, S., Wang, X., Lane, D., Petillot, Y., Wang, S., 2020. Learning mobile manipulation through deep reinforcement learning. Sensors 20 (3), 939.
Yang, K., Cao, N., Ding, Y., Chen, C., 2024. Bestman: A modular mobile manipulator platform for embodied ai with unified simulation-hardware apis. arXiv preprint arXiv:2410.13407.
Yenamandra, S., Ramachandran, A., Yadav, K., Wang, A., Khanna, M., Gervet, T., Yang, T.-Y., Jain, V., Clegg, A. W., Turner, J., et al., 2023. Homerobot: Open vocabulary mobile manipulation. arXiv preprint arXiv:2306.11565
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Adrian Prados, Gonzalo Espinoza, Alberto Mendez, Alicia Mora, Santiago Garrido, Ramon Barber

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.