ADAMSim: PyBullet-Based Simulation Environment for Research on Domestic Mobile Manipulator Robots

Autores/as

DOI:

https://doi.org/10.17979/ja-cea.2025.46.12217

Palabras clave:

Simulador de robots, Gemelo digital, PyBullet, Real-to-Sim, Sim-to-Real, Manipulador Mmovil

Resumen

Este artículo presenta ADAMSim, un entorno de simulación basado en PyBullet diseñado específicamente para el Ambidextrous Domestic Autonomous Manipulator (ADAM), desarrollado para apoyar la investigación en navegación, manipulación y aprendizaje en robótica doméstica. El simulador replica con precisión la estructura y el comportamiento del robot físico, lo que permite una transferencia robusta de algoritmos entre simulación y mundo real. ADAMSim sigue un diseño modular, que incluye navegación, cinemática de brazos y manos, percepción y comunicación mediante ROS. Esta arquitectura permite la operación sincronizada entre el robot real y su gemelo digital. Se desarrollaron diversos ejemplos, que abarcan desde tareas de visión y agarre, hasta navegación y teleoperación, incluyendo experimentos ejecutados simultáneamente en el robot simulado y el real. Su diseño de código abierto y flexible convierte a ADAMSim en una herramienta poderosa para el desarrollo seguro y reproducible de algoritmos y experimentos en robótica doméstica. La plataforma también está pensada para apoyar investigaciones en mapeo de interiores, aprendizaje de manipulación avanzada y proyectos educativos, como banco de pruebas.

Biografía del autor/a

  • Adrian Prados, Universidad Carlos III de Madrid
    My name is Adrián Prados  and I am currently studying a Ph.D. in Electrical, Electronics and Automation Engineering. Since i was a kid I have been passionate about robotics and I have always wanted to investigate into this wide world. I received my degree in Industrial Electronics and Automation Engineering at UC3M in 2021 and my M.Sc. degree in Robotics and Automation at UC3M in 2023.  My interests include path planning, mapping , navigation with mobile robots, manipulation (which was the subject of my final degree project), reinforcement learning and imitation learning (the subject of my final master project). Right now I am working in the HEROITEA project, where we are developing a robot to help elder people in diferent every day actions like could be cook.    Since 2023, I am pursuing my PhD studies. The main topic of my research focuses on the application of Imitation Learning (also known as Learning from Demonstration) techniques to manipulation tasks. The idea is to facilitate the use of robots by people with no prior knowledge, allowing them to teach the robot how they want a task to be done in different environments and constraints.   Some of the project in which I am working can be seen here well as open source code available on my GitHub profile.

Referencias

Barber, R., Ortiz, F. J., Garrido, S., Calatrava-Nicolás, F. M., Mora, A., Prados, A., Vera-Repullo, J. A., Roca-González, J., Méndez, I., Mozos, Ó. M., 2022. A multirobot system in an assisted home environment to support the elderly in their daily lives. Sensors 22 (20), 7983.

Choi, S. H., Park, K.-B., Roh, D. H., Lee, J. Y., Mohammed, M., Ghasemi, Y., Jeong, H., 2022. An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation.Robotics and Computer-Integrated Manufacturing 73, 102258.

Collins, J., Chand, S., Vanderkop, A., Howard, D., 2021. A review of physics simulators for robotic applications. IEEE Access 9, 51416–51431.

Coumans, E., Bai, Y., 2021. Pybullet quickstart guide. ed: PyBullet Quick start Guide. https://docs. google. com/document/u/1/d.

Dan, P., Kedia, K., Chao, A., Duan, E. W., Pace, M. A., Ma, W.-C., Choudhury, S., 2025. X-sim: Cross-embodiment learning via real-to-sim-to-real. arXiv preprint arXiv:2505.07096.

Erez, T., Tassa, Y., Todorov, E., 2015. Simulation tools for model-based robotics: Comparison of bullet, havok, mujoco, ode and physx. In: International conference on robotics and automation (ICRA). IEEE, pp. 4397–4404.

Fernandez, N., Espinoza, G., Mendez, A., Prados, A., Mora, A., Barber, R., 2024. Data generation in simulated domestic environments for assistive robots. In: 2024 7th Iberian Robotics Conference (ROBOT). IEEE, pp. 1–6.

Fernandez, N., Espinoza, G., Mendez, A., Prados, A., Mora, A., Barber, R., 2025. Perspective chapter: Advanced environment modelling techniques for mobile manipulators. IntechOpen.

Lopez, B., Prados, A., Moreno, L., Barber, R., 2023. Taichi algorithm: Human-like arm data generation applied on non-anthropomorphic robotic manipulators for demonstration. In: 2023 European Conference on Mobile Robots (ECMR). IEEE, pp. 1–7.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A., Handa, A., et al., 2021. Isaac gym: High performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470.

Mendez, A., Prados, A., Menendez, E., Barber, R., 2024. Everyday objects re-arrangement in a human-like manner via robotic imagination and learning from demonstration. IEEE Access.

Mora, A., Prados, A., Mendez, A., Barber, R., Garrido, S., 2022. Sensor fusion for social navigation on a mobile robot based on fast marching square and gaussian mixture model. Sensors 22 (22), 8728.

Mora, A., Prados, A., Mendez, A., Espinoza, G., Gonzalez, P., Lopez, B., Mu˜noz, V., Moreno, L., Garrido, S., Barber, R., 2024. Adam: a robotic companion for enhanced quality of life in aging populations. Frontiers in Neurorobotics 18, 1337608.

Prados, A., Espinoza, G., Fernandez, N., Barber, R., 2024a. Imitation learning for low-cost dexterous hand using rgbd camera. In: 2024 7th Iberian Robotics Conference (ROBOT). IEEE, pp. 1–6.

Prados, A., Garrido, S., Barber, R., 2024b. Learning and generalization of task-parameterized skills through few human demonstrations. Engineering Applications of Artificial Intelligence 133, 108310.

Prados, A., Mendez, A., Espinoza, G., Fernandez, N., Barber, R., 2024c. f-divergence optimization for task-parameterized learning from demonstrations algorithm. In: 2024 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, pp. 9–14.

Prados, A., Mora, A., L´opez, B., Mu˜noz, J., Garrido, S., Barber, R., 2023. Kinesthetic learning based on fast marching square method for manipulation. Applied Sciences 13 (4), 2028.

Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., Nori, F., 2008. An open-source simulator for cognitive robotics research: the prototype of the icub humanoid robot simulator. In: Proceedings of the 8th workshop on performance metrics for intelligent systems. pp. 57–61.

Todorov, E., Erez, T., Tassa, Y., 2012. Mujoco: A physics engine for model based control. In: 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp. 5026–5033.

Wang, C., Zhang, Q., Tian, Q., Li, S., Wang, X., Lane, D., Petillot, Y., Wang, S., 2020. Learning mobile manipulation through deep reinforcement learning. Sensors 20 (3), 939.

Yang, K., Cao, N., Ding, Y., Chen, C., 2024. Bestman: A modular mobile manipulator platform for embodied ai with unified simulation-hardware apis. arXiv preprint arXiv:2410.13407.

Yenamandra, S., Ramachandran, A., Yadav, K., Wang, A., Khanna, M., Gervet, T., Yang, T.-Y., Jain, V., Clegg, A. W., Turner, J., et al., 2023. Homerobot: Open vocabulary mobile manipulation. arXiv preprint arXiv:2306.11565

Descargas

Publicado

01-09-2025

Número

Sección

Robótica