Main Article Content

Aitor García-Tomillo
Centro de Investigaciones Científicas Avanzadas (CICA) - Facultad de Ciencias, grupo AQUATERRA, Universidade da Coruña. Campus Elviña As Carballeiras s/n 15071 A Coruña (España).
Spain
https://orcid.org/0000-0003-1444-6698
Jorge Dafonte Dafonte
Departamento de Ingeniería Agroforestal, Escuela Politécnica Superior de Lugo. Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo (España).
Spain
https://orcid.org/0000-0003-4305-1521
Antonio Paz González
Centro de Investigaciones Científicas Avanzadas (CICA) - Facultad de Ciencias, grupo AQUATERRA, Universidade da Coruña. Campus Elviña As Carballeiras s/n 15071 A Coruña (España).
Spain
https://orcid.org/0000-0001-6318-8117
Vol. 41 (2019), Articles, pages 47-58
DOI: https://doi.org/10.17979/cadlaxe.2019.41.0.5812
Submitted: Dec 2, 2019 Published: Dec 2, 2019
How to Cite

Abstract

The aim of this study was to determine the concentrations of extractable Cd, Cr, Ni and Pb in soils samples from a 10 ha grassland field at Castro Ribeira de Lea, Lugo (Spain). Eighty soil samples were collected at two layers of the A horizon, from 0 to 20 cm depth and from 20 cm to a variable depth defined by the boundary of the studied surface horizon, which ranged from 25 to 48 cm. Extractions of the studied elements were performed using two different solutions: Mehlich-3 and DTPA. The Mehlich-3 solution extracted higher concentrations for all the four heavy metals of interest at the two soil depths analyzed. The highest concentration recorded was for PbMehlich-3 (3.54 mg·kg-1 at 0 - 20cm and 2.67 mg·kg-1 at >20cm depths). However, mean Ni, Cr, and Cd concentrations extracted with Mehlich 3 were not higher than 0,30 mg·kg-1, while concentrations extracted with DTPA still were smaller, below 0.16 mg·kg-1- The strongest correlations between extractable concentrations of heavy metals and soil general properties were NiDTPA - pH; NiMehlich-3 - pH at >20 cm and 0-20 respectively; NiDTPA - Clay at 0-20cm, CrMehlich-3 and CdMehlich-3 - OM at 0-20 cm. Correlations with soil pH were negative, showing increasing extractability with increasing soil acidity. This notwithstanding, in our study case, the concentrations of heavy metals in the studied soil under grassland were far from levels, which are considered could be hazardous for agricultural soils. Thus, the results obtained suggest that the agricultural management (fertilizers, pesticides, etc) was appropriate in this area.

Downloads

Download data is not yet available.

Article Details

References

Aguilar, J., Dorronsoro, C., Galán, E., Gómez Ariza , J.L. 1999. Los criterios y estándares para declarar un suelo como contaminado en Andalucía y la metodología y técnica de toma de muestras y análisis para su investigación. In: Investigación y Desarrollo Medioambiental en Andalucía, pp. 61-64. OTRI. Universidad de Sevilla.

Alloway, B.J. 1995. Heavy metals in soils. Blackie Academic and Professional. Chapman & Hall. Glasgow. 368 pp.

Bowie, S.H.U., Thornton, I. 1985. Environmental Geochemistry and Health. Kluwer. Academic Publ. Hingham, MA.

Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L. Turco, R.F., Konopka, A.E. 1994. Field-scale varibility of soil properties in central Iowa soils. Soil. Sci. Am. J., 58(5): 1501-1511.

Caridad Cancela, R. 2002. Contenido de macro-micronutrientes, metales pesados y otros elementos en suelos naturales de São Paulo (Brasil) y Galicia (España). Tesis Doctoral, Universidade da Coruña. 573 pp.

Castelao, A., Diaz-Fierros, F. 1992. Os solos de Terra Chá. Tipos, xénese e aproveitamento. Publ. Diputación Provincial de Lugo, 166 pp.

Davies, B. E. 1977. Heavy metal pollution of British agricultural soils with special reference to the role of lead and copper mining, In: Proc. Int. Semin. on Soil Environment and Fertility Management in Intensive Agriculture, p. 394. Tokyo.

Galán Huertos, E., Romero Baena, A. 2008. Contaminación de Suelos por Metales Pesados. Macla, 10: 48-60.

GEONICS. 2005. EMD38-DD. Ground Conductivity Meter-Dual Dipole Version. Ontario, 34 pp.

Gomes, F.P. 1984. A estatistica moderna na pesquisa agropecuaria. Piraçicaba: Associaçao Brasileira para Pesquisa da Potassa e do Fosfato. 160 pp.

Jin, C.W., Zheng S.J., Hey., F. 2005. Lead contamination in the garden soils and factors affecting its bioavailability. Chemosphere, 59: 1151-1159.

Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants. (4rd edition) CRC Press. Boca Ratón, Florida, EEUU, 432 pp.

Lee, B.D., Carter B.J., Basta, N.T. 1997. Weaver B. Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Science Society of America Journal, 61: 218-223.

Lesch, S.M., Rhoades, J.D., Corwin, D.L. 2000. The ESAP Version 2.01r user manual and tutorial guide. Research Report v.146. George E. Brown Jr., Salinity Laboratory, Riverside, CA, 153 pp.

Lindsay, W.L., Norwell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42: 421-428.

Ma. Y., Hooda, P.S. 2010. Chromium, nickel and cobalt. Trace Elements in Soils (2010), pp. 461-479.

Mc Grath, S.P. 1995. Chromium and nickel. In: Alloway, B.J., Ed., Heavy Metals in Soils, pp. 152-178. Blackie Academic & Professional Press, London.

McNeill, J.D. 1980. Electrical conductivity of soils and rocks. Technical Note, TN-5, Geonics Ltda, Ontario, 22 pp.

Soltanpour, P.N., Khan, A., Lindsay, W.L. (1976). Factors affecting DTPA-extractable Zn, Fe, Mn and Cu from soils. Communications in Soil Science and Plant Analysis, 7(9): 797-821.

Vidal Vázquez, E., Caridad-Cancela, R., Taboada-Castro, M.M., Paz-González, A., De Abreu, C.A. 2005. Trace elements extracted by DTPA and Mehlich-3 from agricultural soils with and without compost additions. Communications in Soil Science and Plant Analysis, 36 (4-6): 712-727.

White, R.E. 2000. Principles and practice of soil science. The soil science. The soils a natural resource. Blackwell Science. 348 pp.