Contenido principal del artículo

Fares M'zoughi
University of the Basque Country (UPV/EHU)
España
Payam Aboutalebi
University of the Basque Country (UPV/EHU)
España
Irfan Ahmad
University of the Basque Country (UPV/EHU)
España
Tahereh Bagheri Rouch
University of the Basque Country (UPV/EHU)
España
Izaskun Garrido
University of the Basque Country (UPV/EHU)
España
Aitor J. Garrido
University of the Basque Country (UPV/EHU)
España
Núm. 45 (2024), Automática Marítima
DOI: https://doi.org/10.17979/ja-cea.2024.45.10975
Recibido: jun. 5, 2024 Aceptado: jun. 14, 2024 Publicado: jul. 13, 2024
Derechos de autor

Resumen

Este artículo presenta un enfoque novedoso para modelar y estabilizar una turbina eólica marina flotante (FOWT) mediante el empleo de columnas de agua oscilantes (OWC) como sistema de control estructural activo. El concepto innovador implica diseñar una nueva plataforma flotante similar a una barcaza con OWC integrados en lados opuestos de la plataforma para mitigar las oscilaciones no deseadas del sistema. Estos OWC contrarrestan las fuerzas de flexión provocadas por el viento en la torre y las olas en la plataforma de la barcaza. Para sincronizar las fuerzas opuestas con la inclinación del sistema, se emplea una estrategia de control de flujo de aire basada en un sistema de inferencia neurodifusa adaptativa de algoritmo genético. Mediante la manipulación del ángulo de inclinación de la plataforma de la barcaza, el sistema de control de flujo de aire GA-ANFIS ajusta las válvulas en cada lado, abriendo una y cerrando la otra en consecuencia. 

Detalles del artículo

Citas

Aboutalebi, P., Garrido, A.J., Garrido, I., Nguyen, D.T. and Gao, Z. 2024. Hydrostatic stability and hydrodynamics of a floating wind turbine platform integrated with oscillating water columns: A design study. Renewable Energy 221, 119824. DOI: 10.1016/j.renene.2023.119824

Aboutalebi, P., M’zoughi, F., Garrido, I. and Garrido, A.J. 2023. A control technique for hybrid floating offshore wind turbines using oscillating water columns for generated power fluctuation reduction. Journal of Computational Design and Engineering 10(1), 250-265. DOI: 10.1093/jcde/qwac137

Ahmad, I., M’zoughi, F., Aboutalebi, P., Garrido, I. and Garrido, A.J. 2023. A regressive machine-learning approach to the non-linear complex FAST model for hybrid floating offshore wind turbines with integrated oscillating water columns. Scientific Reports 13(1), 1499. DOI: 10.1038/s41598-023-28703-z

Ahmad, I., Mzoughi, F., Aboutalebi, P., Garrido, I. and Garrido, A. 2022. A Machine-Learning Approach for the Development of a FOWT Model Integrated with Four OWCs. In 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC). pp. 72-76. Crete, Greece. IEEE. DOI: 10.1109/CSCC55931.2022.00023

Bagheri Rouch, T., Fakharian, A. 2022. Robust control of islanded DC microgrid for voltage regulation based on polytopic model and load sharing. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 46(1), 171-186. DOI: 10.1007/s40998-021-00462-5

Hu, J., Zhou, B., Vogel, C., Liu, P., Willden, R., Sun, K., Zang, J., Geng, J., Jin, P., Cui, L. and Jiang, B. 2020. Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters. Applied energy 269, 114998. DOI: 10.1016/j.apenergy.2020.114998

Hu, Y. and He, E. 2017. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper. Journal of Sound and Vibration 410, 447-472. DOI: 10.1016/j.jsv.2017.08.050

Hu, Y., Wang, J., Chen, M.Z., Li, Z. and Sun, Y. 2018. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control. Engineering Structures 177, 198-209. DOI: 10.1016/j.engstruct.2018.09.063

Jonkman, J., 2008, January. Influence of control on the pitch damping of a floating wind turbine. In 46th AIAA aerospace sciences meeting and exhibit. pp. 1-15, Reno, NV, USA. DOI: 10.2514/6.2008-1306

Jonkman, J.M., 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine. Doctoral’s Dissertation, Department of Aerospace Engineering Sciences, University of Colorado, Colorado, USA.

Kaldellis, J.K., Kapsali, M. 2013. Shifting towards offshore wind energy-Recent activity and future development. Energy policy 53, 136-148. DOI: 10.1016/j.enpol.2012.10.032

Kamarlouei, M., Gaspar, J.F., Calvario, M., Hallak, T.S., Mendes, M.J., Thiebaut, F., Soares, C.G., 2020. Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renewable Energy 152, 1171-1185. DOI: 10.1016/j.renene.2020.01.078

Kluger, J.M., Slocum, A.H. and Sapsis, T.P. 2017. A first-order dynamics and cost comparison of wave energy converters combined with floating wind turbines. In 27th International Ocean and Polar Engineering Conference, San Francisco, California, USA. ISBN: 978-1-880653-97-5

Lackner, M.A. and Rotea, M.A. 2011. Structural control of floating wind turbines. Mechatronics, 21(4), 704-719. DOI: 10.1016/j.mechatronics.2010.11.007

M’zoughi, F., Aboutalebi, P., Ahmad, I., Garrido, I. and Garrido, A.J., 2022, July. Dual Airflow Control Strategy for Floating Offshore Wind Turbine Stabilization Using Oscillating Water Columns. In APCA International Conference on Automatic Control and Soft Computing. 428-438. Cham: Springer International Publishing. DOI: 10.1007/978-3-031-10047-5_38

M’zoughi, F., Aboutalebi, P., Garrido, I., Garrido, A.J. and De La Sen, M. 2021. Complementary airflow control of oscillating water columns for floating offshore wind turbine stabilization. Mathematics 9(12), 1364. DOI: 10.3390/math9121364

M’zoughi, F., Garrido, I. and Garrido, A.J. 2020. Symmetry-breaking for airflow control optimization of an oscillating-water-column system. Symmetry 12(6), 895. DOI: 10.3390/sym12060895

M’zoughi, F., Garrido, I., Garrido, A.J. and De La Sen, M. 2023. Fuzzy airflow-based active structural control of integrated oscillating water columns for the enhancement of floating offshore wind turbine stabilization. International Journal of Energy Research, 2023. DOI: 10.1155/2023/4938451

M'zoughi, F., Garrido, A.J., Garrido, I., Bouallègue, S. and Ayadi, M., 2018, June. Sliding mode rotational speed control of an oscillating water column-based wave generation power plants. In 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). pp. 1263-1270. Amalfi, Italy. IEEE. DOI: 10.1109/SPEEDAM.2018.8445229

Pérez-Collazo, C., Greaves, D., Iglesias, G. 2015. A review of combined wave and offshore wind energy. Renewable and sustainable energy reviews 42, 141-153. DOI: 10.1016/j.rser.2014.09.032

Slocum, A., Kluger, J. and Mannai, S. 2019, July. Energy harvesting and storage system stabilized offshore wind turbines. In 2019 Offshore Energy and Storage Summit (OSES). pp. 1-6. BREST, France. IEEE. DOI: 10.1109/OSES.2019.8867345

Stewart, G. and Lackner, M. 2013. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems. IEEE Transactions on Control Systems Technology 21(4), 1090-1104. DOI: 10.1109/TCST.2013.2260825

Vijfhuizen, W.J.M.J., 2006. Design of a Wind and Wave Power Barge. Master’s Dissertation, Department of Naval Architecture and Mechanical Engineering, Universities of Glasgow and Strathclyde, Glasgow, Scotland.