Enfoque general y sistemático para percepción activa semántica en robótica
DOI:
https://doi.org/10.17979/ja-cea.2024.45.10938Palabras clave:
Tecnología robótica, Robótica móvil, Percepción y sensorizaciónResumen
En este artículo, abordamos el problema de la percepción activa de información semántica, centrado en determinar las acciones que un robot móvil debe realizar para obtener información semántica de calidad del entorno. Con el auge de los algoritmos de percepción semántica, surgen nuevas oportunidades para los sistemas de planificación robóticos. Sin embargo, para aprovechar estas oportunidades, es crucial identificar los elementos esenciales que cualquier sistema de control orientado a la percepción debe tener. Para ello, proponemos una arquitectura general aplicable a cualquier sistema de percepción activa y analizamos las diferencias fundamentales que surgen al considerar información semántica en su diseño. Además, describimos una implementación preliminar de la arquitectura propuesta. Nuestro objetivo principal es proporcionar a los investigadores una formulación general y un sistema unificado y modular que facilite el avance en el campo de la percepción activa semántica.
Citas
Álvaro, S.-G., Montijano, E., Böhmer, W., Alonso-Mora, J., 2023. Active classification of moving targets with learned control policies. IEEE Robotics and Automation Letters 8 (6), 3717–3724. DOI: https://doi.org/10.1109/LRA.2023.3271508
Asgharivaskasi, A., Atanasov, N., 2021. Active bayesian multi-class mapping from range and semantic segmentation observations. In: 2021 IEEE International Conference on Robotics and Automation. pp. 1–7. DOI: https://doi.org/10.1109/ICRA48506.2021.9561711
Asgharivaskasi, A., Atanasov, N., 2023. Semantic octree mapping and shannon mutual information computation for robot exploration. IEEE Transactions on Robotics 39 (3), 1910–1928. DOI: https://doi.org/10.1109/TRO.2023.3245986
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoderdecoder with atrous separable convolution for semantic image segmentation. In: European Conference on Computer Vision. DOI: https://doi.org/10.1007/978-3-030-01234-2_49
Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D., Leutenegger, S., 2020. Fast frontier-based information-driven autonomous exploration with an mav. In: IEEE International Conference on Robotics and Automation. pp. 9570–9576. DOI: https://doi.org/10.1109/ICRA40945.2020.9196707
Elfes, A., 1989. Using occupancy grids for mobile robot perception and navigation. Computer 22 (6), 46–57. DOI: https://doi.org/10.1109/2.30720
Feldman, Y., Indelman, V., 2020. Spatially-dependent bayesian semantic perception under model and localization uncertainty. Autonomous Robots 44 (6), 1091–1119. DOI: https://doi.org/10.1007/s10514-020-09921-0
Grinvald, M., Furrer, F., Novkovic, T., Chung, J. J., Cadena, C., Siegwart, R., Nieto, J., 2019. Volumetric instance-aware semantic mapping and 3d object discovery. IEEE Robotics and Automation Letters 4 (3), 3037–3044. DOI: https://doi.org/10.1109/LRA.2019.2923960
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., Burgard, W., Apr 2013. Octomap: an efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34 (3), 189–206. DOI: https://doi.org/10.1007/s10514-012-9321-0
Isler, S., Sabzevari, R., Delmerico, J., Scaramuzza, D., 2016. An information gain formulation for active volumetric 3d reconstruction. In: IEEE International Conference on Robotics and Automation. pp. 3477–3484. DOI: https://doi.org/10.1109/ICRA.2016.7487527
Kompis, Y., Bartolomei, L., Mascaro, R., Teixeira, L., Chli, M., 2021. Informed sampling exploration path planner for 3d reconstruction of large scenes. IEEE Robotics and Automation Letters 6 (4), 7893–7900. DOI: https://doi.org/10.1109/LRA.2021.3101856
Liu, X., Prabhu, A., Cladera, F., Miller, I. D., Zhou, L., Taylor, C. J., Kumar, V., 2023. Active metric-semantic mapping by multiple aerial robots. In: IEEE International Conference on Robotics and Automation. pp. 3282–3288. DOI: https://doi.org/10.1109/ICRA48891.2023.10161564
Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K., 2010. The office marathon: Robust navigation in an indoor office environment. In: IEEE International Conference on Robotics and Automation. pp. 300–307. DOI: https://doi.org/10.1109/ROBOT.2010.5509725
Marques, J. M. C., Zhai, A., Wang, S., Hauser, K., 2023. On the overconfidence problem in semantic 3d mapping. arXiv preprint arXiv:2311.10018.
McCormac, J., Handa, A., Davison, A., Leutenegger, S., 2017. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks. In: IEEE International Conference on Robotics and Automation. pp. 4628–4635. DOI: https://doi.org/10.1109/ICRA.2017.7989538
Milioto, A., Vizzo, I., Behley, J., Stachniss, C., 2019. Rangenet ++: Fast and accurate lidar semantic segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4213–4220. DOI: https://doi.org/10.1109/IROS40897.2019.8967762
Morilla-Cabello, D., Mur-Labadia, L., Martinez-Cantin, R., Montijano, E., 2023a. Robust fusion for bayesian semantic mapping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 76–81. DOI: https://doi.org/10.1109/IROS55552.2023.10342253
Morilla-Cabello, D., Westheider, J., Popovic, M., Montijano, E., 2023b. Perceptual factors for environmental modeling in robotic active perception. arXiv preprint arXiv:2309.10620.
Nießner, M., Zollh¨ofer, M., Izadi, S., Stamminger, M., nov 2013. Real-time 3d reconstruction at scale using voxel hashing. ACM Trans. Graph. 32 (6). DOI: https://doi.org/10.1145/2508363.2508374
Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., Nieto, J., 2017. Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1366–1373. DOI: https://doi.org/10.1109/IROS.2017.8202315
Papatheodorou, S., Funk, N., Tzoumanikas, D., Choi, C., Xu, B., Leutenegger, S., 2023. Finding things in the unknown: Semantic object-centric exploration with an mav. In: IEEE International Conference on Robotics and Automation. pp. 3339–3345. DOI: https://doi.org/10.1109/ICRA48891.2023.10160490
Popovic, M., Vidal-Calleja, T., Hitz, G., Chung, J. J., Sa, I., Siegwart, R., Nieto, J., 2020. An informative path planning framework for uav-based terrain monitoring. Autonomous Robots 44 (6), 889–911. DOI: https://doi.org/10.1007/s10514-020-09903-2
Puig, X., Undersander, E., Szot, A., Cote, M. D., Partsey, R., Yang, J., Desai, R., Clegg, A. W., Hlavac, M., Min, T., Gervet, T., Vondrus, V., Berges, V.-P., Turner, J., Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J., Chaplot, D. S., Jain, U., Batra, D., Rai, A., Mottaghi, R., 2024. Habitat 3.0: A co-habitat for humans, avatars and robots.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 779–788. DOI: https://doi.org/10.1109/CVPR.2016.91
Rosinol, A., Violette, A., Abate, M., Hughes, N., Chang, Y., Shi, J., Gupta, A., Carlone, L., 2021. Kimera: From slam to spatial perception with 3d dynamic scene graphs. The International Journal of Robotics Research 40 (12-14), 1510–1546. DOI: https://doi.org/10.1177/02783649211056674
Rückin, J., Jin, L., Popovic, M., 2022. Adaptive informative path planning using deep reinforcement learning for uav-based active sensing. In: International Conference on Robotics and Automation. pp. 4473–4479. DOI: https://doi.org/10.1109/ICRA46639.2022.9812025
Schmid, L., Pantic, M., Khanna, R., Ott, L., Siegwart, R., Nieto, J., 2020. An efficient sampling-based method for online informative path planning in unknown environments. IEEE Robotics and Automation Letters 5 (2), 1500–1507. DOI: https://doi.org/10.1109/LRA.2020.2969191
Shah, S., Dey, D., Lovett, C., Kapoor, A., 2018. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. pp. 621–635. DOI: https://doi.org/10.1007/978-3-319-67361-5_40
Song, Y., Naji, S., Kaufmann, E., Loquercio, A., Scaramuzza, D., 2021. Flightmare: A flexible quadrotor simulator. In: Conference on Robot Learning. pp. 1147–1157.
Zhou, B., Zhang, Y., Chen, X., Shen, S., 2021. Fuel: Fast uav exploration using incremental frontier structure and hierarchical planning. IEEE Robotics and Automation Letters 6 (2), 779–786. DOI: https://doi.org/10.1109/LRA.2021.3051563
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 David Morilla Cabello, Eduardo Montijano
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.