Efficient Coordination of Heterogeneous Unmanned Aerial Systems in Cooperative Surveillance
DOI:
https://doi.org/10.17979/ja-cea.2024.45.10935Palabras clave:
Unmanned Aerial Systems, ApplicationsResumen
Este artículo aborda la coordinación y planificación de rutas de múltiples Sistemas Aéreos no Tripulados (UAS) heterogéneos en misiones cooperativas de vigilancia y búsqueda y rescate. El sistema forma parte de un contrato de transferencia de tecnología. Eficiencia, robustez, flexibilidad, reconfigurabilidad y escalabilidad son sus principales requisitos. El esquema propuesto se compone de dos módulos. El primero resuelve el problema Vehicle Routing Problem y asigna a cada UAS una lista ordenada de puntos de interés a visitar de modo que se minimice el tiempo total de la misión. El segundo módulo determina una ruta segura y factible para cada UAS minimizando la desviación respecto su ruta evitando zonas de exclusión aérea y cumpliendo las restricciones cinemáticas del UAS. El desempeño presentado muestra el potencial del esquema en aplicaciones como logística, vigilancia y gestión de desastres, entre otras.
Citas
Adewumi, A. O., Adeleke, O. J., 2018. A survey of recent advances in vehicle routing problems. International Journal of System Assurance Engineering and Management 9, 155–172 DOI: https://doi.org/10.1007/s13198-016-0493-4
Cabreira, T. M., Brisolara, L. B., Paulo R, F. J., 2019. Survey on coverage path planning with unmanned aerial vehicles. Drones 3 (1), 4 DOI: https://doi.org/10.3390/drones3010004
Cai, Y., Xi, Q., Xing, X., Gui, H., Liu, Q., 2019. Path planning for uav tracking target based on improved a-star algorithm. In: 2019 1st International Conference on Industrial Artificial Intelligence (IAI). IEEE, pp. 1–6. DOI: https://doi.org/10.1109/ICIAI.2019.8850744
Corberán, T., Plana, I., Sanchis, J. M., Segura, P., 2024. The multidepot drone general routing problem with duration and capacity constraints. International Transactions in Operational Research. DOI: https://doi.org/10.1111/itor.13457
CVX Research, I., Aug. 2012. CVX: Matlab software for disciplined convex programming, version 2.0
Dhulkefl, E., Durdu, A., Terzio ̆glu, H., 2020. Dijkstra algorithm using uav path planning. Konya Journal of Engineering Sciences 8, 92–105 DOI: https://doi.org/10.36306/konjes.822225
Furnon, V., Perron, L., May 2024. Or-tools routing library.
Gu, R., Poon, M., Luo, Z., Liu, Y., Liu, Z., 2022. A hierarchical solution evaluation method and a hybrid algorithm for the vehicle routing problem with drones and multiple visits. Transportation Research Part C: Emerging Technologies 141, 103733. DOI: https://doi.org/10.1016/j.trc.2022.103733
Gurobi Optimization, LLC, 2023. Gurobi Optimizer Reference Manual.
He, W., Qi, X., Liu, L., 2021. A novel hybrid particle swarm optimization for multi-uav cooperate path planning. Applied Intelligence 51 (10), 7350–7364. DOI: https://doi.org/10.1007/s10489-020-02082-8
Huang, L., Qu, H., Ji, P., Liu, X., Fan, Z., 2016. A novel coordinated path planning method using k-degree smoothing for multi-uavs. Applied Soft Computing 48, 182–192. DOI: https://doi.org/10.1016/j.asoc.2016.06.046
Kuiper, E., Nadjm-Tehrani, S., 2006. Mobility models for uav group reconnaissance applications. In: 2006 International Conference on Wireless and Mobile Communications (ICWMC’06). IEEE, pp. 33–33. DOI: https://doi.org/10.1109/ICWMC.2006.63
Li, B., Qi, X., Yu, B., Liu, L., 2019. Trajectory planning for uav based on improved aco algorithm. IEEE Access 8, 2995–3006. DOI: https://doi.org/10.1109/ACCESS.2019.2962340
Ravankar, A., Ravankar, A. A., Kobayashi, Y., Hoshino, Y., Peng, C.-C., 2018. Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges. Sensors 18 (9), 3170. DOI: https://doi.org/10.3390/s18093170
Saleu, R. G. M., Deroussi, L., Feillet, D., Grangeon, N., Quilliot, A., 2022. The parallel drone scheduling problem with multiple drones and vehicles. European Journal of Operational Research 300 (2), 571–589. DOI: https://doi.org/10.1016/j.ejor.2021.08.014
Sharma, H., Sebastian, T., Balamuralidhar, P., 2017. An efficient backtracking-based approach to turn-constrained path planning for aerial mobile robots. In: 2017 European Conference on Mobile Robots. pp. 1–8 DOI: https://doi.org/10.1109/ECMR.2017.8098712
Song, B., Wang, Z., Zou, L., 2017. On global smooth path planning for mobile robots using a novel multimodal delayed pso algorithm. Cognitive Computation 9 (1), 5–17. DOI: https://doi.org/10.1007/s12559-016-9442-4
Zhen, Z., Xing, D., Gao, C., 2018. Cooperative search-attack mission planning for multi-uav based on intelligent self-organized algorithm. Aerospace Science and Technology 76, 402–411. DOI: https://doi.org/10.1016/j.ast.2018.01.035
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Ehsan Kouchaki, Laura García-Junceda, Miguel Ángel de Frutos, Jose Ramiro Martínez-de-Dios, Anibal Ollero
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.