Contenido principal del artículo

Daniel Teso Fz. de Betoño
UPV/EHU
España
Iñigo Aramendia
UPV/EHU
España
https://orcid.org/0000-0002-4960-8709
José Antonio Ramos-Hernanz
UPV/EHU
España
https://orcid.org/0000-0001-9706-4016
Idoia Manero
UPV/EHU
España
https://orcid.org/0009-0006-7887-0331
Daniel Caballero-Martin
UPV/EHU
España
https://orcid.org/0009-0007-7373-117X
José Manuel Lopez-Guede
UPV/EHU
España
https://orcid.org/0000-0002-5310-1601
Núm. 45 (2024), Robótica
DOI: https://doi.org/10.17979/ja-cea.2024.45.10887
Recibido: jun. 4, 2024 Aceptado: jul. 3, 2024 Publicado: jul. 17, 2024
Derechos de autor

Resumen

En esta investigación, introducimos un nuevo Enfoque de Ventana Dinámica Predictiva (P-DWA), donde el algoritmo no solo anticipa la trayectoria óptima en términos de tiempo, sino que también evalúa el consumo energético del movimiento del robot móvil. El P-DWA predice nueve posibles destinos, evalúa su rendimiento temporal y elige las tres mejores trayectorias. Mediante el modelado de los motores del robot móvil, se logra estimar el consumo energético y el par requerido para un mapa 2D y de las trayectorias predichas se determina el consumo de cada una de ellas en vatios-hora (W/h), para optar por aquellas que menor consumo requieran. Los resultados muestran que, mediante la consideración energética, es posible llegar a reducir el 9% del consumo energético comparación con el enfoque de Ventana Dinámica convencional.

Detalles del artículo

Citas

Botta, A., Cavallone, P., Baglieri, L., Colucci, G., Tagliavini, L., Quaglia, G., 2022. A Review of Robots, Perception, and Tasks in Precision Agriculture. Applied Mechanics 3, 830–854. https://doi.org/10.3390/applmech3030049 DOI: https://doi.org/10.3390/applmech3030049

Chen, C., Pei, L., Xu, C., Zou, D., Qi, Y., Zhu, Y., Li, T., 2019. Trajectory Optimization of LiDAR SLAM Based on Local Pose Graph, in: Sun, J., Yang, C., Yang, Y. (Eds.), China Satellite Navigation Conference (CSNC) 2019 Proceedings, Lecture Notes in Electrical Engineering. Springer Singapore, Singapore, pp. 360–370. https://doi.org/10.1007/978-981-13-7751-8_36 DOI: https://doi.org/10.1007/978-981-13-7751-8_36

Cheng, C., Fu, J., Su, H., Ren, L., 2023. Recent Advancements in Agriculture Robots: Benefits and Challenges. Machines 11, 48. https://doi.org/10.3390/machines11010048 DOI: https://doi.org/10.3390/machines11010048

Cornejo-Lupa, M.A., Ticona-Herrera, R.P., Cardinale, Y., Barrios-Aranibar, D., 2021. A Survey of Ontologies for Simultaneous Localization and Mapping in Mobile Robots. ACM Comput. Surv. 53, 1–26. https://doi.org/10.1145/3408316 DOI: https://doi.org/10.1145/3408316

Emmi, L., Fernández, R., Gonzalez-de-Santos, P., 2023. An Efficient Guiding Manager for Ground Mobile Robots in Agriculture. Robotics 13, 6. https://doi.org/10.3390/robotics13010006 DOI: https://doi.org/10.3390/robotics13010006

Fox, D., Burgard, W., Thrun, S., 1997. The dynamic window approach to collision avoidance. IEEE Robot. Automat. Mag. 4, 23–33. https://doi.org/10.1109/100.580977 DOI: https://doi.org/10.1109/100.580977

García, C.E., Prett, D.M., Morari, M., 1989. Model predictive control: Theory and practice—A survey. Automatica 25, 335–348. https://doi.org/10.1016/0005-1098(89)90002-2 DOI: https://doi.org/10.1016/0005-1098(89)90002-2

Karaman, S., Frazzoli, E., 2011. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research 30, 846–894. https://doi.org/10.1177/0278364911406761 DOI: https://doi.org/10.1177/0278364911406761

Kim, J., Yang, G.-H., 2022. Improvement of Dynamic Window Approach Using Reinforcement Learning in Dynamic Environments. Int. J. Control Autom. Syst. 20, 2983–2992. https://doi.org/10.1007/s12555-021-0462-9 DOI: https://doi.org/10.1007/s12555-021-0462-9

Kumar, A., Maneesha, Pandey, P.K., 2024. Advances in Simultaneous Localization and Mapping (SLAM) for Autonomous Mobile Robot Navigation, in: Uddin, M.S., Bansal, J.C. (Eds.), Proceedings of International Joint Conference on Advances in Computational Intelligence, Algorithms for Intelligent Systems. Springer Nature Singapore, Singapore, pp. 481–493. https://doi.org/10.1007/978-981-97-0180-3_38 DOI: https://doi.org/10.1007/978-981-97-0180-3_38

Kunwar, F., Benhabib, B., 2008. Advanced Predictive Guidance Navigation for Mobile Robots: A Novel Strategy for Rendezvous in Dynamic Settings. International Journal on Smart Sensing and Intelligent Systems 1, 858–890. https://doi.org/10.21307/ijssis-2017-325 DOI: https://doi.org/10.21307/ijssis-2017-325

Liu, C., Lee, S., Varnhagen, S., Tseng, H.E., 2017. Path planning for autonomous vehicles using model predictive control, in: 2017 IEEE Intelligent Vehicles Symposium (IV). Presented at the 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE, Los Angeles, CA, USA, pp. 174–179. https://doi.org/10.1109/IVS.2017.7995716 DOI: https://doi.org/10.1109/IVS.2017.7995716

Loganathan, A., Ahmad, N.S., 2023. A systematic review on recent advances in autonomous mobile robot navigation. Engineering Science and Technology, an International Journal 40, 101343. https://doi.org/10.1016/j.jestch.2023.101343 DOI: https://doi.org/10.1016/j.jestch.2023.101343

Missura, M., Bennewitz, M., 2019. Predictive Collision Avoidance for the Dynamic Window Approach, in: 2019 International Conference on Robotics and Automation (ICRA). Presented at the 2019 International Conference on Robotics and Automation (ICRA), IEEE, Montreal, QC, Canada, pp. 8620–8626. https://doi.org/10.1109/ICRA.2019.8794386 DOI: https://doi.org/10.1109/ICRA.2019.8794386

Rosolia, U., Zhang, X., Borrelli, F., 2018. Data-Driven Predictive Control for Autonomous Systems. Annu. Rev. Control Robot. Auton. Syst. 1, 259–286. https://doi.org/10.1146/annurev-control-060117-105215 DOI: https://doi.org/10.1146/annurev-control-060117-105215

Song, K.-T., Chiu, Y.-H., Kang, L.-R., Song, S.-H., Yang, C.-A., Lu, P.-C., Ou, S.-Q., 2018. Navigation Control Design of a Mobile Robot by Integrating Obstacle Avoidance and LiDAR SLAM, in: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Presented at the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, Miyazaki, Japan, pp. 1833–1838. https://doi.org/10.1109/SMC.2018.00317 DOI: https://doi.org/10.1109/SMC.2018.00317

Teso-Fz-Betoño, D., Zulueta, E., Fernandez-Gamiz, U., Saenz-Aguirre, A., Martinez, R., 2019. Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement. Electronics 8, 935. https://doi.org/10.3390/electronics8090935 DOI: https://doi.org/10.3390/electronics8090935

Wang, X., Taghia, J., Katupitiya, J., 2016. Robust Model Predictive Control for Path Tracking of a Tracked Vehicle with a Steerable Trailer in the Presence of Slip. IFAC-PapersOnLine 49, 469–474. https://doi.org/10.1016/j.ifacol.2016.10.085 DOI: https://doi.org/10.1016/j.ifacol.2016.10.085

Yao, M., Deng, H., Feng, X., Li, P., Li, Y., Liu, H., 2024. Improved dynamic windows approach based on energy consumption management and fuzzy logic control for local path planning of mobile robots. Computers & Industrial Engineering 187, 109767. https://doi.org/10.1016/j.cie.2023.109767 DOI: https://doi.org/10.1016/j.cie.2023.109767

Yépez-Ponce, D.F., Salcedo, J.V., Rosero-Montalvo, P.D., Sanchis, J., 2023. Mobile robotics in smart farming: current trends and applications. Front. Artif. Intell. 6, 1213330. https://doi.org/10.3389/frai.2023.1213330 DOI: https://doi.org/10.3389/frai.2023.1213330