Contenido principal del artículo

Gabriel Gómez-Ruiz
Research Centre CITES, University of Huelva, 21007 Huelva, Spain
España
https://orcid.org/0000-0002-0532-6486
Adolfo J. Sánchez
Department of Mechanical, Biomedical, and Manufacturing Engineering, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
Irlanda
https://orcid.org/0000-0003-3942-847X
Reyes Sánchez-Herrera
Research Centre CITES, University of Huelva, 21007 Huelva, Spain
España
https://orcid.org/0000-0003-3099-7262
José M. Andújar
Research Centre CITES, University of Huelva, 21007 Huelva, Spain
España
https://orcid.org/0000-0002-0631-0021
Núm. 45 (2024), Modelado, Simulación y Optimización
DOI: https://doi.org/10.17979/ja-cea.2024.45.10818
Recibido: may. 30, 2024 Aceptado: jul. 5, 2024 Publicado: jul. 16, 2024
Derechos de autor

Resumen

Thermostatically controlled loads (TCLs) play a crucial role in reducing energy consumption in buildings. Thus, developing accurate models that enable the effective implementation of energy control strategies is essential. With this goal in mind, a model of a room influenced by an air conditioning (AC) unit was developed as an initial starting point for our research into TCL systems modeling and control. In this work, a data-driven modeling approach was utilized, employing data collected from an ad-hoc data collection platform. In addition, an algorithm was developed to determine the AC’s operational states. The results, based on RMSE (Root Mean Square Error) and MAXAE (Maximum Absolute Error) metrics, demonstrate the effectiveness of the proposed algorithm and data-driven modeling approach in capturing the thermal dynamics of the room under the influence of the AC unit.

Detalles del artículo

Citas

Afram, A., Janabi-Sharifi, F., 2015. Black-box modeling of residential HVAC system and comparison of gray-box and black-box modeling methods. Energy Build. 94, 121–149. https://doi.org/10.1016/j.enbuild.2015.02.045

Air conditioning unit Hisense APC12QC, 2024. URL https://www.hisense.es/aire-acondicionado-domestico/portatil/aireacondicionado-portatil-apc12qc/ (accessed 5.14.24).

arx, 2024. URL https://es.mathworks.com/help/ident/ref/arx.html (accessed 5.27.24).

Beghi, A., Cecchinato, L., Paggiaro, F., Rampazzo, M., 2011. VAVAC systems modeling and simulation for FDD applications. Presented at the 2011 9th IEEE International Conference on Control and Automation (ICCA), IEEE, Santiago, Chile, pp. 800–805. https://doi.org/10.1109/ICCA.2011.6138039

Berouine, A., Akssas, E., Naitmalek, Y., Lachhab, F., Bakhouya, M., Ouladsine, R., Essaaidi, M., 2019. A Fuzzy Logic-Based Approach for HVAC Systems Control. Presented at the 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, Paris, France, pp. 1510–1515. https://doi.org/10.1109/CoDIT.2019.8820356

Berouine, A., Ouladsine, R., Bakhouya, M., Essaaidi, M., 2022. A predictive control approach for thermal energy management in buildings. Energy Rep. 8, 9127–9141. https://doi.org/10.1016/j.egyr.2022.07.037

Braun, J.E., Kyoung-Ho Lee, 2006. An Experimental Evaluation of Demand Limiting Using Building Thermal Mass in a Small Commercial Building. ASHRAE Trans. 112, 559–571.

Canbay, Ç.S., 2003. Optimization of Hvac Control Strategies by Building Management Systems Case Study: Özdilek Shopping Center (M.Sc.). Ann Arbor, United States.

ESP32, 2024. URL https://www.espressif.com/en/products/socs/esp32 (accessed 5.27.24).

Gomez-Ruiz, G., Sanchez-Herrera, R., Andujar, J.M., Rubio Sanchez, J.L., 2024. Simulation-Based Education Tool for Understanding Thermostatically Controlled Loads. Sustainability 16, 999. https://doi.org/10.3390/su16030999

Guo, W., Nutter, D.W., 2010. Setback and setup temperature analysis for a classic double-corridor classroom building. Energy Build. 42, 189–197. https://doi.org/10.1016/j.enbuild.2009.08.014

International Energy Agency [WWW Document], 2023. URL https://www.iea.org/energy-system/buildings/space-cooling (accessed 5.17.24).

Li, S., Ren, S., Wang, X., 2013. HVAC room temperature prediction control based on neural network model. Presented at the 5th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE, New York, pp. 606–609. https://doi.org/10.1109/ICMTMA.2013.151

Liu, M., Tian, Y., Cheng, D., Zhang, Y., Ding, L., 2022. Modelling and control of central air-conditioning loads for power system emergency frequency control. IET Gener. Transm. Distrib. 16, 4054–4067. https://doi.org/10.1049/gtd2.12571

MCP9808, 2024. URL https://www.microchip.com/en-us/product/mcp9808 (accessed 5.24.24).

Moroşan, P.-D., Bourdais, R., Dumur, D., Buisson, J., 2010. Building temperature regulation using a distributed model predictive control. Energy Build. 42, 1445–1452. https://doi.org/10.1016/j.enbuild.2010.03.014

n4sid, 2024. URL https://es.mathworks.com/help/ident/ref/n4sid.html#mw_a7743737-84cd-49b8-bf91-971f4c0246f8 (accessed 5.27.24).

SONOFF RFR2, 2024. URL https://sonoff.tech/product/diy-smartswitches/rfr2/ (accessed 5.24.24).

Soyguder, S., Karakose, M., Alli, H., 2009. Design and simulation of selftuning PID-type fuzzy adaptive control for an expert HVAC system. Expert Syst. Appl. 36, 4566–4573. https://doi.org/10.1016/j.eswa.2008.05.031

Turner, W.J.N., Walker, I.S., Roux, J., 2015. Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass. Energy 82, 1057–1067. https://doi.org/10.1016/j.energy.2015.02.011