Contenido principal del artículo

Silva-Muñiz, D.
Grupo en Ingeniería Eficiente y Digital, Universidad de Vigo
España
Garrido, J.
Grupo en Ingeniería Eficiente y Digital, Universidad de Vigo
España
https://orcid.org/0000-0001-9974-9465
Riveiro, E.
Grupo en Ingeniería Eficiente y Digital, Universidad de Vigo
España
https://orcid.org/0000-0002-0153-9310
Rivera-Andrade, J.
Grupo en Ingeniería Eficiente y Digital, Universidad de Vigo
España
https://orcid.org/0009-0009-3591-7154
Núm. 45 (2024), Automática Marítima
DOI: https://doi.org/10.17979/ja-cea.2024.45.10785
Recibido: may. 29, 2024 Aceptado: jun. 14, 2024 Publicado: jul. 15, 2024
Derechos de autor

Resumen

En esta investigación se emplea una plataforma Stewart desarrollada por el grupo de investigación con el fin de poder emular condiciones oceánicas para realizar pruebas sistemáticas. Específicamente, se generan los movimientos oceánicos basándose en el espectro de energía de las olas JONSWAP y el modelo armónico simple de la superficie marina derivado del espectro, como superposición de ondas regulares. De esta forma se obtiene una ola irregular. La contribución también incluye la implementación utilizando únicamente los recursos disponibles en un controlador industrial, sin usar software externo. En la fase de resultados, se muestran dos movimientos generados y se comparan con los obtenidos con un sensor MRU y la cinemática directa calculada en el propio controlador industrial. Como trabajo futuro, se plantea expandir la generación a espectros bidimensionales.

Detalles del artículo

Citas

Arconada, V. S., García-Barruetabeña, J., Haas, R., 2023. Validation of a ride comfort simulation strategy on an electric Stewart Platform for real road driving applications. Journal of Low Frequency Noise, Vibration and Active Control 42 (1), 368–391. DOI: 10.1177/14613484221122109

Cai, Y., Zheng, S., Liu, W., Qu, Z., Zhu, J., Han, J., 2021. Sliding-mode control of ship-mounted Stewart platforms for wave compensation using velocity feedforward. Ocean Engineering 236, 109477. DOI: 10.1016/j.oceaneng.2021.109477

Chakrabarti, S. K., 2005. Ocean Environment. In: Chakrabarti, S. K. (Ed.), Handbook of Offshore Engineering. Elsevier, Illinois, USA, Ch. 3, pp. 79– 131.

Chen, W., Du, C., Tong, J., Liu, F., Men, Y., 2024. Dynamics Solution and Characteristics Analysis of a 6-SPS Passive Vibration Isolator Based on MS-DT-TMM. Journal of Vibration Engineering & Technologies 12 (3), 4463–4482. DOI: 10.1007/s42417-023-01131-z

Chuan, W., Huafeng, D., Lei, H., 2018. A dynamic ocean wave simulator based on six-degrees of freedom parallel platform. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (20), 3722–3732. DOI: 10.1177/0954406217739647

Det Norske Veritas, 2011. Modelling and analysis of marine operations. Prácticas Recomendadas DNV-RP-H103, Det Norske Veritas. URL: https://home.hvl.no/ansatte/gste/ftp/MarinLab_files/Litteratur/DNV/rp-h103_2011-04.pdf

Han, B., Chen, N., 2021. Simulation of Ship Trajectory in Waves Based on STAR-CCM+. Bulletin of Science and Practice 7 (4), 267–275. DOI: 10.33619/2414-2948/65/30

Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, A., Hasselmann, D., Kruseman, P., Meerburg, A., M¨uller, P., Olbers, D., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Erg¨anzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A Nr. 12.

Longuet-Higgins, M., 1952. On the Statistical Distribution of the Heights of Sea Waves. Journal of Marine Research 11 (3).

Madsen, A. L., Kristensen, SG., 2012. Design of Stewart Platform for Wave Compensation. Aalborg University, Aalborg, Denmark. URL: https://vbn.aau.dk/ws/files/63502229/EMSD415a_Final.pdf

OMRON Corporation, 2019a. NJ/NX-Series Instructions Reference Manual. Kyoto, Japan. URL: https://assets.omron.eu/downloads/manual/en/v4/w502_nx_nj-series_instructions_reference_manual_en.pdf

OMRON Corporation, 2019b. NJ/NX-Series Motion Control Instructions Reference Manual. Kyoto, Japan. URL: https://assets.omron.eu/downloads/manual/en/v2/w508_nx_nj-series_motion_control_instructions_reference_manual_en.pdf

Ship Motion Control, 2024. MRU IMU-008 Roll/Pitch/Heave. URL: https://www.store.shipmotion.eu/smc-imu-008-roll-pitch-heave-surface-mru

Sun, L., Yang, X.-Q., Bu, S.-X., Zheng, W.-T., Ma, Y.-X., Jiao, Z.-L., 2023. Analysis of FPSO Motion Response under Different Wave Spectra. Journal of Marine Science and Engineering 11 (7), 1467. DOI: 10.3390/jmse11071467

Tabeshpour, M. R., Belvasi, N., 2023. Ocean waves time-series generation: Minimum required artificial wave time-series for wave energy converter analysis. Journal of Marine Engineering & Technology 22 (6), 273–283. DOI: 10.1080/20464177.2023.2197280

Walica, D., Noskieviˇc, P., 2024. Multibody Simulation Model as Part of Digital Twin Architecture: Stewart Platform Example. IEEE Access 12, 3700–3717. DOI: 10.1109/ACCESS.2023.3349247

Wei, M.-Y., 2021. Design and Implementation of Inverse Kinematics and Motion Monitoring System for 6DoF Platform. Applied Sciences 11 (19), 9330. DOI: 10.3390/app11199330

Wei, Y., Wang, A., Han, H., 2019. Ocean wave active compensation analysis of inverse kinematics for hybrid boarding system based on fuzzy algorithm. Ocean Engineering 182, 577–583. DOI: 10.1016/j.oceaneng.2019.03.059

Xu, Y., Liang, S., Sun, Z., Xue, Q., 2022. A new spectral parameter to predict dominant wave breaking based on the JONSWAP spectrum. Ocean Engineering 243, 110332. DOI: 10.1016/j.oceaneng.2021.110332

Yazid, E., Mirdanie, M., Ardiansyah, R. A., Rahmat, Ristiana, R., Sulaeman, Y., 2021. Inverse Kinematics Model for a Ship Mounted Two-DoF Manipulator System. In: 2021 IEEE Ocean Engineering Technology and Innovation Conference (OETIC). IEEE, Jakarta, Indonesia, pp. 50–56. DOI: 10.1109/OETIC53770.2021.9733723

Zhang, Q., Wang, X.-y., Zhang, Z.-z., Zhou, F.-n., Hu, X., 2022. Wave Heave Compensation Based on An Optimized Backstepping Control Method. China Ocean Engineering 36 (6), 959–968. DOI: 10.1007/s13344-022-0084-x