Main Article Content

Rosa María Martínez Sánchez
Universidad de Murcia, Grado en Fisioterapia
Spain
Aitor Baño Alcaraz
Departamento de Fisioterapia, Universidad de Murcia
Spain
José Antonio García Vidal
Departamento de Fisioterapia, Universidad de Murcia
Spain
Marta Belando Navarro
Grado en Fisioterapia. Universidad de Murcia
Spain
Ángel Martínez Carrasco
Departamento de Fisioterapia, Universidad de Murcia
Spain
Agustín Ángel Belmonte Albaladejo
Doctor por la Universidad de Murcia
Spain
Vol. 6 No. 1 (2020), Original Articles, pages 19-25
DOI: https://doi.org/10.17979/ejpod.2020.6.1.5726
Submitted: Sep 7, 2019 Accepted: Oct 8, 2020 Published: Oct 30, 2020
How to Cite

Abstract

Objective: To establish the relationship between the difference in length, the distribution of the load in the standing position and the structural alterations of the lower limb.
Material and Methods: A descriptive, observational, cross-sectional study was carried out with a sample of 31 patients (49.1% men / 58.1% women). Anthropometric and sociodemographic variables were obtained, measurement of the lower extremities, Q angle and calcaneal valgus and evaluation of the load distribution in the lower limb.
Results: An almost perfect concordance (k = 0.9; p = 0.000) was obtained between the measurements of the anterior superior iliac spine-external malleolus and the anterior superior iliac spine-internal malleolus.
Conclusions: After determining the irrelevance of taking some bone landmarks or others, it has been obtained that the lower left limb is longer in the majority of the population, with greater load distribution on the hindfoot of the shorter leg.

Downloads

Download data is not yet available.

Article Details

References

Beeck A, Quack V, Rath B, Wild M, Michalik R, Schenker H, et al. Dynamic evaluation of simulated leg length inequalities and their effects on the musculoskeletal apparatus. Gait Posture. 2019;67:71-76. doi: https://doi.org/10.1016/j.gaitpost.2018.09.022

Mishima K, Kitoh H, Kadono I, Matsushita M, Sugiura H, Hasegawa S, et al. Prediction of Clinically Significant Leg-Length Discrepancy in Congenital Disorders. Orthopedics. 2015;38(10): 919-924. doi: https://doi.org/10.3928/01477447-20151002-60

Knutson GA. Anatomic and functional leg-length inequality: a review and recommendation for clinical decision-making. Part I, anatomic leg-length inequality: prevalence, magnitude, effects and clinical significance. Chiropr Osteopat. 2005;13:11. doi: https://doi.org/10.1186/1746-1340-13-11

Gurney B. Leg length discrepancy. Gait Posture. 2002;15(2):195-206. https://doi.org/10.1016/S0966-6362(01)00148-5

Sánchez C S, Ortega F X, Baar A A, Lillo S S, De la Maza B A, Moëne B K, et al. Asimetría de extremidades inferiores: Evaluación por imágenes en la edad pediátrica. Rev Chil Radiol. 2013;19:177-86. http://dx.doi.org/10.4067/S0717-93082013000400007

Mahmoud A, Abundo P, Basile L, Albensi C, Marasco M, Bellizzi L, et al. Functional leg length discrepancy between theories and reliable instrumental assessment: a study about newly invented NPoS system. Muscles Ligaments Tendons J. 2017;7(2):293-305. doi: https://doi.org/10.11138/mltj/2017.7.2.293

Brady RJ, Dean JB, Skinner TM, Gross MT. Limb length inequality: clinical implications for assessment and intervention. J Orthop Sports Phys Ther. 2003;33(5):221-234. doi: https://doi.org/10.2519/jospt.2003.33.5.221

Reina-Bueno M, Lafuente-Sotillos G, Castillo-Lopez J, Gomez-Aguilar E, Munuera-Martinez P. Radiographic Assessment of Lower-Limb Discrepancy. J Am Podiatr Med Assoc. 2017;107(5):393-398. doi: https://doi.org/10.7547/15-204

Aguilar EG, Domínguez Á, Peña-Algaba C, Castillo-López JM. Distance Between the Malleoli and the Ground. J Am Podiatr Med Assoc. 2017;107(2):112-8. doi: https://doi.org/10.7547/15-013

Woerman A, MAJ, AMSC, Binder-MacLeod S. Leg Length Discrepancy Assessment: Accuracy and Precision in Five Clinical Methods of Evaluation. J Orthop Sports Phys Ther. 1984:5(5)230-239. doi: https://doi.org/10.2519/jospt.1984.5.5.230

Khamis S, Springer S, Ovadia D, Krimus S, Carmeli E. Measuring Dynamic Leg Length during Normal Gait. Sensors (Basel). 2018;18(12):4191. doi: https://doi.org/10.3390/s18124191

Lane G. A Novel Technique to Determine Foot Contribution to Limb-Length Discrepancy. J Am Podiatr Med Assoc. 2017;107(4):340-341. doi: https://doi.org/10.7547/16-062

Assogba TF, Boulet S, Detrembleur C, Mahaudens P. The effects of real and artificial Leg Length Discrepancy on mechanical work and energy cost during the gait. Gait Posture. 2018;59:147-151. doi: https://doi.org/10.1016/j.gaitpost.2017.10.004

Qureshi Y, Kusienski A, Bemski J, Luksch J, Knowles L. Effects of Somatic Dysfunction on Leg Length and Weight Bearing. J Am Osteopath Assoc. 2014;114(8):620-630. doi: https://doi.org/10.7556/jaoa.2014.127

Zuil-Escobar J, Martínez-Cepa C, Martín-Urrialde J, Gómez-Conesa A. Medial Longitudinal Arch: Accuracy, Reliability, and Correlation Between Navicular Drop Test and Footprint Parameters. J Manipulative Physiol Ther. 2018;41(8):672-679. doi: https://doi.org/10.1016/j.jmpt.2018.04.001

Senovilla-Serrano R, Losa-Iglesias ME, Fuentes-Rodríguez M, Becerro de Bengoa-Vallejo R. Presiones plantares, estabilometría y género, analizados con plataforma computerizada. Tesis Doctoral. Universidad Rey Juan Carlos. España.

Silva D de O, Briani R, Pazzinatto M, Gonçalves A, Ferrari D, Aragão F et al. Q- angle static or dynamic measurements, which is the best choice for patellofemoral pain?. Clin Biomech (Bristol, Avon). 2015;30(10):1083-1087. doi: https://doi.org/10.1016/j.clinbiomech.2015.09.002

Sobel E, Levitz S, Caselli M, Brentnall Z, Tran M. Natural History of the Rearfoot Angle: Preliminary Values in 150 Children. Foot Ankle Int. 1999;20(2):119-125. doi: https://doi.org/10.1177/107110019902000209

Kanatli U, Gözil R, Besli K, Yetkin H, Bölükbasi S. The Relationship Between the Hindfoot Angle and the Medial Longitudinal Arch of the Foot. Foot Ankle Int. 2006;27(8):623-627. doi: https://doi.org/10.1177/107110070602700810

López-López, D., Vilar-Fernández, J., Barros-García, G., Losa-Iglesias, M., Palomo-López, P., Becerro-de-Bengoa-Vallejo, R., & Calvo-Lobo, C. (2018). Foot Arch Height and Quality of Life in Adults: A Strobe Observational Study. International Journal of Environmental Research and Public Health, 15(7), 1555. doi: https://doi.org/10.3390/ijerph15071555

López-López, D., Marañon-Medina, J., Losa-Iglesias, M. E., Calvo-Lobo, C., Rodríguez-Sanz, D., Palomo-López, P., & Vallejo, R. B. de B. (2018). The influence of heel height related on quality of life on the foot in a sample of women. Revista Da Associação Médica Brasileira, 64(4), 324–329. doi: https://doi.org/10.1590/1806-9282.64.04.324