
A distributed learning proposal to improve industrial processes maintaining data privacy

Melgarejo Aragón, Marco.a,∗

aCentro Tecnológico de Componentes-CTC, Scientific and Technological Park of Cantabria (PCTCAN), 39011 Santander, Spain.

To cite this article: Melgarejo Aragón, Marco. 2024. A distributed learning proposal to improve industrial
pro-cesses maintaining data privacy. Jornadas de Automática, 45. https://doi.org/10.17979/ja-cea.2024.45.10976

Abstract

A distributed learning algorithm has been developed, focused on leveraging valuable information from industrial processes
of various clients. This algorithm significantly improves the predictive capabilities of Machine Learning models by allowing
access to a larger pool of training data. This is achieved by sharing the weights of the models among different participants,
without the need to exchange the data itself, ensuring that each client maintains the privacy and security of their information.
Thus, this approach not only optimizes the performance of the models individually but also enhances the overall level of artificial
intelligence applied in the industrial sector.

Keywords: Machine Learning, Distributed Optimisation for Large-Scale Systems, Secure Networked Control Systems, Control
under Communication Constraints.

1. Introduction

1.1. Current overview

As digitization and globalization progress, the volume of
available data continues to grow. Concurrently, the complex-
ity of artificial intelligence models designed to derive new
insights from this data is also expanding. This complexity
stems from the intricate challenges these models address in
various domains, including computer vision, natural language
processing, and speech recognition.

Training such complex models necessitates extensive
training datasets and parameters to effectively enhance their
inferencing and predictive capabilities. Thus, these two as-
pects continually feed into each other in an endless loop. The
main limitation lies in the processing capacity for handling
these complex models and the vast amounts of data they re-
quire (Tang et al., 2020).

Training these models involves different types of process-
ing units, which can be categorized into Central Processing
Units (CPUs), Graphics Processing Units (GPUs), and Tensor
Processing Units (TPUs). CPUs are general-purpose proces-
sors that offer versatility for a broad range of computing tasks.
GPUs excel in graphic-intensive and parallel processing tasks,
handling vast amounts of data efficiently. TPUs are specially

designed to manage tensor operations, which are data struc-
tures essential for tasks in Machine Learning (ML).

The training process increasingly involves significant
computational costs and substantial time consumption. For
instance, training a state-of-the-art ResNet-50 model on the
well-known ImageNet database using a cutting-edge GPU like
the Nvidia Tesla V100 takes roughly two days. A GPU’s pro-
cessing capacity is determined by its memory, used to store
the necessary data for parallel computations, and its computa-
tional speed, measured in floating-point operations per second
(FLOPS) (Tang et al., 2020).

To better understand the processing capacity challenges
in the data science realm, consider two graphs in Figure
1. Figure 1a highlights the recent growth in GPU memory
size alongside the memory requirements of leading-edge deep
learning (DL) models, while Figure 1b displays petaFLOPS
on the vertical axis and years on the horizontal to chart the
evolution of both top-tier DL models and GPUs. The mem-
ory needed by models began to significantly increase in 2018
and surpassed the capabilities of GPUs by 2020 with the no-
table DL model GPT-3. In terms of FLOPS, the computational
speed required by these DL models is immense compared to
GPUs.

∗Correspondence: mmelgarejo@centrotecnologicoctc.com
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.17979/ja-cea.2024.45.10976

Melgarejo Aragón, Marco. / Jornadas de Automática, 45 (2024)

GPU memory and neural networks.

GPU and training model FLOPS.

Figure 1: Observed trends in GPU development and the pro-
gression of neural networks. Adapted from (Tang et al., 2020).

It’s clear that the development of GPUs in terms of com-
putational speed and memory is lagging and insufficient to
handle the increasingly complex neural network models be-
ing developed, as shown in Figure 1.

To address this issue, two popular solutions exist:

• Developing highly optimized software, such as the
cuDNN library, which enhances GPU performance and
memory usage by providing efficient implementations
of computational routines, utilizing specific GPU re-
sources, and minimizing memory overhead.

• Employing distributed learning to accelerate the train-
ing process using multiple processors, including CPUs,
GPUs, and TPUs. With distributed learning, spreading
the workload can reduce overall training time. How-
ever, a new challenge arises: communication costs be-
tween processors hinder efficient scalability. In a col-
laborative network, the larger the network, the more
data need to be transmitted among them (input data,
model parameters, model updates, results of intermedi-
ate calculations, etc.), thus reducing the available band-
width for communication.

Distributed learning refers to the method of training ML
models by distributing the workload across multiple comput-
ing units or clients. There are several classical approaches to
implementing distributed learning, including data parallelism
and model parallelism (Mayer and Jacobsen, 2020):

• Data parallelism: This approach involves running the
same model on different subsets of the data across mul-
tiple processors. Each computing worker receives a
copy of the model parameters and computes local gra-
dients or model updates using different mini-batches of
data during each iteration. The local results are then
shared between workers, aggregated, and broadcasted
to update the global model. Data parallelism is a popu-
lar technique due to its significant scalability benefits.

• Model parallelism: Unlike data parallelism, model
parallelism splits the model across various processors,
with each part of the model being trained on the entire
dataset. This method involves partitioning the model
parameters among multiple computing workers, where
each worker manages different parameters or layers of
the model. Although model parallelism can be bene-
ficial in certain cases, this work primarily emphasizes
data parallelism techniques due to their extensive use
and scalability advantages.

However, in the industrial sector, where the protection of
proprietary information is paramount, distributed learning can
play a crucial role. This will be detailed in the next section.

1.2. Specific problem

This work introduces an advanced distributed learning al-
gorithm designed to optimize the use of valuable industrial
process data from various clients. By leveraging Federated
Learning (FL), the algorithm enhances the predictive power
of ML models without requiring the direct sharing of sensi-
tive or proprietary data. In this way, the centralization of data
is avoided, which would have been the standard approach until
now without this new approach. Even with the use of encryp-
tion or new technologies like blockchain, centralizing data re-
quires the data to travel outside the client’s domain.

Instead, it utilizes a novel approach where model weights
are shared among the participants, allowing all clients to ben-
efit from improved model accuracy while maintaining strict
data privacy. This method ensures that each participant’s data
remains within their control, reducing risks associated with
data breaches and ensuring compliance with industry-specific
regulations.

Although we focus on the industrial domain, this work
provides a step-by-step Python implementation of FL that
is applicable to any field and type of dataset.

Such a strategy not only elevates the individual perfor-
mance of ML models but also boosts the collective application
of artificial intelligence within the industrial sector. By focus-
ing on the aggregation of model updates rather than raw data
exchange, FL offers a scalable solution that addresses both
privacy concerns and the need for robust data utilization in
complex industrial environments.

Melgarejo Aragón, Marco. / Jornadas de Automática, 45 (2024)

Therefore, while it is less likely, industrial data might con-
tain personal information that must be handled according to
strict privacy regulations, such as the GDPR (General Data
Protection Regulation). This distributed learning approach en-
sures compliance with such regulations by keeping sensitive
data within the client’s domain and only sharing the necessary
model updates (Su et al., 2022).

2. Methodology and development

2.1. Data source

The distributed learning process has been simulated with
two canonical datasets, EMNIST and CIFAR-10, downloaded
from TensorFlow/Datasets, a library of public datasets ready
to use within the TensorFlow ecosystem in Python. The
datasets are described below:

EMNIST Dataset
The EMNIST (Extended MNIST) dataset (TensorFlow,

2023b) is an extension of the well-known MNIST (Modified
National Institute of Standards and Technology) dataset, de-
signed to include letters in addition to the digits from 0 to
9. EMNIST contains grayscale images of handwritten letters,
both uppercase and lowercase, as well as digits. The dataset
size consists of 697932 training images and 116323 testing
images. Like MNIST, each image in EMNIST is 28x28 pix-
els. The images are in grayscale, with pixel values ranging
from 0 (white) to 255 (black). Figure 2 shows some sample
images from the EMNIST dataset.

Figure 2: Sample images from the EMNIST dataset.

CIFAR-10 Dataset
The CIFAR-10 dataset (TensorFlow, 2023a) is widely

used in the field of ML and computer vision to evaluate image
classification algorithms. It consists of 60000 color images
of 32x32 pixels, divided into 10 classes, with 6000 images
per class. The classes represent airplanes, cars, birds, cats,
deer, dogs, frogs, horses, ships, and trucks. Figure 3 shows
examples of these images. The dataset is divided into 50000
training images and 10000 test images.

Figure 3: Sample images from the CIFAR-10 dataset.

2.2. Distributed architecture

A distributed learning architecture with a central server
has been simulated using synthetic clients. The scheme fol-
lowed by this architecture is shown in Figure 4, where an ex-
ample with 5 synthetic clients is depicted. Additionally, its
pseudocode is shown in Code Block 1, which uses the aggre-
gation function, with pseudocode shown in Code Block 2.

Figure 4: Example of a Federated Learning architecture with
a central server and five synthetic clients.

Melgarejo Aragón, Marco. / Jornadas de Automática, 45 (2024)

def FL_architecture(n_times, initial_weights, n_i, model, data_dict):

"""

Federated learning architecture implementation.

:param n_times: Total number of communication rounds

:param initial_weights: Initial model weights from the trained ANN

:param n_i: List indicating the number of samples per client

:param model: Pre-trained ANN model

:param data_dict: Dictionary containing clients' data with training and testing splits

:return save_weights: Aggregated model weights from all rounds

"""

Initialize list to store weights from all rounds

save_weights = []

Iterate over communication rounds

for i in range(1,n_times+1):

Initialize list to collect client weights for this round

weights_round = list()

Generate weights for each client

for name in data_dict.keys():

Assign initial weights to the client model

model.set_weights(initial_weights)

Train the client's model

X_train_np = np.array(data_dict[name]['X_train'])
y_train_np = np.array(data_dict[name]['y_train'])
Train the model with the given parameters

model.fit(X_train_np, y_train_np, epochs=2, batch_size=128)

Retrieve the trained weights from the client model

weights_client = model.get_weights()

Store the client's weights

weights_round.append(weights_client)

Perform aggregation of the client weights

avg_weights = ave_weights(n_i, weights_round)

Update the global model with aggregated weights

model.set_weights(avg_weights)

Update initial weights for the next communication round

initial_weights = avg_weights

Store the aggregated weights of this round

save_weights.append(avg_weights.copy())

return save_weights

Code Block 1: Python code for a simulated Federated Learning architecture algorithm.

Melgarejo Aragón, Marco. / Jornadas de Automática, 45 (2024)

def ave_weights(n_i, listOfWeights):

"""

Aggregation function to compute weighted average of model parameters.

:param list n_i: Number of samples per client

:param list listOfWeights: Weights from each client

:return: Weighted average of the model parameters for the global model

"""

N = sum(n_i) # Total number of samples across all clients

Initialize the global model weights to zero

ave_weights = listOfWeights[0]

ave_weights = [i * 0 for i in ave_weights]

Iterate over each client

for j in range(len(n_i)):

Retrieve the weights from the current client

rec_weight = listOfWeights[j]

Scale the weights by the number of samples in the client's dataset

rec_weight = [i * n_i[j] for i in rec_weight]

Normalize by the total number of samples

rec_weight = [i / N for i in rec_weight]

Add the scaled weights to the cumulative total

ave_weights = [x + y for x, y in zip(ave_weights, rec_weight)]

return ave_weights

Code Block 2: Python code for an aggregation function to compute a weighted average of client model parameters in Federated
Learning.

This Figure 4 is labelled with numbers corresponding to
the following steps:

1. Training a ML model on each client.

2. Extracting model weights from clients.

3. Aggregating model weights into a global model.

4. Global model weights are sent back to each client.

5. Repeating the last steps for more communication
rounds.

The Code Block 1 demonstrates a simulated implementa-
tion of a FL architecture in Python. This code block illustrates
how the FL process can be simulated using an artificial neu-
ral network (ANN) and a central server that coordinates the
training of multiple synthetic clients. The FL architecture

function is responsible for managing this process over several
rounds of communication.

The FL architecture function starts by initializing a
list, save weights, which will store the aggregated model
weights at the end of each communication round. Then, it uses
a “for loop” to iterate through the total number of communica-
tion rounds specified by the n times parameter. Within each
iteration of this loop, a list, weights round, is initialized to
collect the weights of the models trained by each client during
that round.

For each client, identified by the keys in the data dict

dictionary, the code assigns the initial weights to the client’s
model using model.set weights(initial weights).

Then, the client’s training data is extracted from the
data dict dictionary and converted into NumPy arrays.
The client’s ANN model is trained using this data via the
model.fit function, which fits the model to the training data
for the given epochs with the provided batch size.

After training the client’s model, the adjusted model
weights are retrieved with model.get weights() and stored
in the weights round list. This process is repeated for all
clients in each communication round. Once all clients have
trained their models and their weights have been collected,
these weights are aggregated.

The aggregation of the client model weights is performed
using the ave weights function, detailed in Code Block 2.
This function takes as input the list of client weights and the
number of data samples from each client. The goal of this
function is to calculate a weighted average of the weights,
where each client’s weight set is weighted according to the
size of their dataset.

The ave weights function begins by calculating the to-
tal number of data samples from all clients by summing the
values of n i. Then, it initializes the global model weights to
zero. Next, it iterates over each client, retrieving the current
client’s weights and scaling them according to the number of
samples in the client’s dataset. These scaled weights are nor-
malized by dividing by the total number of samples and are
added cumulatively to the global weights. This process en-
sures that the final weights fairly reflect each client’s contri-
bution based on the size of their data.

Melgarejo Aragón, Marco. / Jornadas de Automática, 45 (2024)

Finally, the aggregated model weights for the cur-
rent round are assigned to the global model with
model.set weights(avg weights), and the initial weights
are updated for the next communication round. The ag-
gregated weights of each round are copied and stored in
the save weights list, which is returned at the end of the
FL architecture function. These aggregated weights are
ready to be used in the calculation of classification metrics on
the test set, allowing the evaluation of the federated model’s
performance after each round of training and aggregation.

In summary, the presented code blocks show a detailed im-
plementation of a FL algorithm, from data distribution among
clients and local model training to weight aggregation and
global model updating. This approach allows simulating and
evaluating the efficiency and effectiveness of FL in a con-
trolled environment using synthetic data.

2.3. Machine learning details

In order to obtain results focusing on the distributed learn-
ing architecture, a key aspect of this study, a basic academic
ML architecture was chosen. This architecture is intentionally
simple, with few layers and neurons per layer, to ensure that
the complexity of the model does not overshadow the analysis.
The models were trained with only 2 epochs and a batch size
of 128. By using a straightforward ML architecture, the pri-
mary focus remains on evaluating the distributed learning pro-
cess itself, making the improvements in model performance
more evident.

The Artificial Neural Networks (ANN) that were run in
both use cases had the architecture shown below:

• Conv2D layer. Filters 32. Kernel size: (3,3). Activa-
tion: ReLU. Input shape: (28, 28, 1) (EMNIST dataset)
or (32, 32, 3) (CIFAR-10 dataset).

• MaxPooling2D layer. Pool size: (2,2). Strides: None.

• Conv2D layer. Filters 64. Kernel size: (3,3). Activa-
tion: ReLU.

• Flatten layer.

• Dense layer. Units 64. Activation: ReLU.

• Dense layer. Units 62 (EMNIST dataset) or units 10
(CIFAR-10 dataset). Activation: SoftMax.

The employed loss function was the categorical cross-
entropy loss, mathematically defined in the Equation 1 and
the model’s performance was evaluated based on the accuracy
metric.

L(y, p) = −
1
N

N∑
i=1

K∑
j=1

yi j · log(pi j) (1)

where yi j indicates whether sample i belongs to class j (1 if
true, 0 otherwise), pi j is the predicted probability by the model
for sample i belonging to class j, N is the total number of sam-
ples, and K is the number of classes.

For both use cases, the original train/test split from Ten-
sorFlow, previously mentioned, was used. The pixel values
were normalized by dividing by 255.

It is important to emphasize that no validation split is
needed to run the models during the distributed communica-
tion. This is because, in a real-world scenario, it is proposed
that before the communication rounds, the client with the most
balanced and extensive dataset, characterized by a high degree
of IID (Independent and Identically Distributed) data (Zhang
et al., 2021), designs the optimal ANN architecture. There-
fore, only testing measures will need to be run by each client
on each round.

2.4. Software

The main dependencies are shown below:

• Python version: 3.8.10

• NumPy version: 1.23.4

• Pandas version: 2.0.3

• Matplotlib version: 1.23.4

• Scikit-learn version: 1.3.2

• TensorFlow version: 2.11.0

3. Results and discussion

For reproducibility of results, the following seeds were
fixed to zero value: numpy.random.seed, random.seed and
tf.random.set seed. The EMNIST dataset was used to
simulate a FL architecture of 5 communication rounds with
3 sintetic clients and the same for CIFAR-10 dataset but du-
plicating the number of rounds in order to reach a metric con-
vergence when testing, their results are shown in the Figure 5
and Figure 6 respectively.

Figure 5: Evolution of the loss and accuracy metrics for the
EMNIST dataset.

Melgarejo Aragón, Marco. / Jornadas de Automática, 45 (2024)

In Figure 5, it can be seen that in this simulation, the loss
and accuracy metrics evolve with very similar values. After
only 3 communication rounds, they converge to stable values,
significantly improving the loss.

Figure 6: Evolution of the loss and accuracy metrics for the
CIFAR-10 dataset.

Additionally, in Figure 6, it can be seen that the met-
rics evolve rapidly and favorably, converging for all synthetic
clients in about 8 communication rounds.

The simulation of distributed learning communication
conducted in this study, with the two use case datasets, shows
promising results and serves as a demonstration that this could
be exploited in the real-world scenario. The implementation
of this approach would enable harnessing the vast amount of
data generated by daily operations without compromising the
privacy and security of information. Furthermore, by dis-
tributing data processing across multiple nodes or devices,
companies could perform complex analyses and train artificial
intelligence models efficiently and scalably.

This demonstration opens the door to collaborative
projects that could not only improve individual industrial pro-
cesses but also contribute to the overall well-being of the sec-
tor through the development of more accurate and efficient
models.

Although there are comprehensive tools in the state of the
art, such as FATE (FederatedAI, 2024), that enable the devel-
opment of distributed learning, their application has mainly
focused on the finance sector. Nevertheless, there are still
many challenges to address (Liu et al., 2024). A very sig-
nificant limitation of such distributed learning tools could be
the absence of a reliable mediator that facilitates security and
privacy during information exchange. It is proposed here that
the mediator be responsible for the central server on which the
global model is formed. It is worth noting that for the success-
ful implementation of a common ML model, standardization
in data collection and processing among participating compa-
nies is required. This could be achieved through the adoption
of regulations and procedures, such as those stipulated in cer-
tain ISO standards, to ensure the compatibility and relevance
of the data used in the architecture. Furthermore, this would
allow promoting a culture of standardization and quality in in-
dustrial production processes.

References

FederatedAI, 2024. FederatedAI (FATE): Federated Learning Framework for
Secure and Privacy-Preserving AI. https://federatedai.org/.

Liu, Y., Kang, Y., Zou, T., Pu, Y., He, Y., Ye, X., Ouyang, Y., Zhang, Y.-Q.,
Yang, Q., 2024. Vertical federated learning: Concepts, advances, and chal-
lenges. IEEE Transactions on Knowledge and Data Engineering, 1–20.
URL: http://dx.doi.org/10.1109/TKDE.2024.3352628
DOI: 10.1109/tkde.2024.3352628

Mayer, R., Jacobsen, H.-A., 2020. Distributed and parallel machine learning:
A comprehensive review. Journal of Parallel and Distributed Computing.

Su, W., Li, L., Liu, F., He, M., Liang, X., 2022. Ai on the edge: a comprehen-
sive review. Artificial Intelligence Review 55 (8), 6125–6183.

Tang, Z., Shi, S., Chu, X., Wang, W., Li, B., 2020. Communication-
efficient distributed deep learning: A comprehensive survey. CoRR
abs/2003.06307.
URL: https://arxiv.org/abs/2003.06307

TensorFlow, 2023a. Cifar-10 dataset in tensorflow datasets.
URL: https://www.tensorflow.org/datasets/catalog/cifar10

TensorFlow, 2023b. Emnist dataset in tensorflow datasets.
URL: https://www.tensorflow.org/datasets/catalog/emnist

Zhang, W., Wang, X., Zhou, P., Wu, W., Zhang, X., 2021. Client selection
for federated learning with non-iid data in mobile edge computing. IEEE
Access 9, 24462–24474.
DOI: 10.1109/ACCESS.2021.3056919

https://federatedai.org/
http://dx.doi.org/10.1109/TKDE.2024.3352628
https://arxiv.org/abs/2003.06307
https://www.tensorflow.org/datasets/catalog/cifar10
https://www.tensorflow.org/datasets/catalog/emnist

	Introduction
	Current overview
	Specific problem

	Methodology and development
	Data source
	Distributed architecture
	Machine learning details
	Software

	Results and discussion

