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Resumen

Este artı́culo aborda el desarrollo de un nuevo método de aproximación lineal para el producto de dos variables continuas,
aplicado a la optimización de la programación de operaciones de crudo en una refinerı́a abastecida por barcos. Un reto clave en
este problema de programación de operaciones es la gestión del almacenamiento de crudos en tanques. Dado que la capacidad de
almacenamiento es limitada y que existen varios tipos de crudos con diferentes composiciones, es necesario almacenar mezclas
de crudos en los tanques. Esta caracterı́stica introduce restricciones no lineales y no convexas, lo que complica la resolución
de los modelos de programación matemática. Con el fin de superar este problema, hemos desarrollado una estrategia basada en
aproximación lineal por tramos utilizando planos, que permite tratar eficientemente las restricciones no lineales asociadas a la
mezcla de crudos en tanques.

Palabras clave: Modelado y toma de decisiones en sistemas complejos, Estrategias eficientes para sistemas complejos a gran
escala, Planificación y control de la producción, Optimización y control de sistemas de redes a gran escala, Sistemas logı́sticos
complejos.

Abstract

This article focuses on the development of a new linear approximation method for the product of two continuous variables,
which is applied to the optimization of crude oil operations scheduling in a refinery supplied by ships. A key challenge in this
scheduling problem is the management of crude oil storage in tanks. Since the storage capacity is limited and there are different
types of crude oil with different compositions, it is necessary to store mixtures of crude oils in the tanks. This feature introduces
nonlinear and non-convex constraints, which complicate the solution of the mathematical programming models. To overcome
this problem, we have developed a strategy based on piecewise linear approximation using planes, which efficiently handles the
nonlinear constraints associated with crude oil blending in tanks.

Keywords: Modelling and decision making in complex systems, Efficient strategies for large scale complex systems,
Production planning and control, Optimization and control of large-scale network systems, Complex logistic systems.

1. Introduction

In this paper, we develop a new method that allows the lin-
ear approximation of the product of two continuous variables.
The motivation for this development stems from the problem
of blending crude oils in tanks, which is present in crude oil
operations scheduling.

In the mathematical modeling of the crude oil opera-
tions scheduling problem, a constraint must be included that
equates the composition of the stored crude oil blend with the
composition of the output blend for each storage tank. This
constraint is nonlinear and non-convex because it includes two
bilinear terms, each of which is the product of two continuous
variables related to the inventory level and the volume trans-
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ferred from the tanks to the distillation units.
The method presented in this work consists of a piece-

wise linear approximation using planes. To evaluate the per-
formance of this method, a crude oil operations scheduling
problem based on a case study from the literature was solved
and compared with other methods: piecewise McCormick ap-
proximation and DICOPT.

Next, we describe the crude oil operations scheduling opti-
mization problem in a refinery supplied by ships to provide the
reader with the context of the problem that motivated the de-
velopment of the linear approximation method. We analyze a
system composed of a marine terminal, and an oil storage and
processing unit connected by a pipeline. The terminal serves
as the location for unloading the crude oil transported by the
ships. We consider a single dock terminal, which allows the
unloading of one ship at a time.

Concerning the storage and processing section, it is di-
vided into two areas: the storage tank area and the crude dis-
tillation unit area. The first is connected to the marine termi-
nal by a pipeline and, as the name suggests, consists of tanks
for storing crude oil received from the terminal. Most refiner-
ies have two types of tanks: storage tanks, which receive and
store crude oil from ships, and charging tanks, used for cre-
ating blends to feed distillation units, meeting certain quality
specifications. Due to the traditional operation of refineries
utilizing both types of tanks, a wide variety of articles address-
ing the optimization of crude oil operations scheduling in such
refineries have been published in recent decades (Lee et al.
(1996), Mouret et al. (2009), Castro and Grossmann (2014),
Yang et al. (2020)). However, some refineries opt to eliminate
charging tanks to save space and reduce immobilized capital.
Instead, they implement online mixing in the pipelines feed-
ing the crude distillation units (CDUs) using a suitable control
system. While researchers have studied this case, there is a
smaller number of published works focusing on this type of
refinery (Cerdá et al. (2015), Garcı́a-Verdier et al. (2022)).

An important characteristic in both cases is that the con-
centration of crude oil in the outflow of a tank must be equal
to the concentration inside the tank. This behavior is repre-
sented by a set of nonlinear non-convex constraints that give
rise to mixed-integer nonlinear programming (MINLP) mod-
els that are difficult to solve. In the literature, we can find
works proposing different strategies to address this problem.
For example, in de Assis et al. (2017), the authors propose
a two-step MILP-NLP decomposition algorithm, where the
mixed-integer linear programming (MILP) model is obtained
by replacing each side of the nonlinear constraint with piece-
wise McCormick envelopes. Also, the work presented in
Castro and Grossmann (2014) introduces a two-step MILP-
NLP algorithm, where the bilinear blending constraints are
relaxed using multiparametric disaggregation. This technique
involves discretizing one of the variables of the bilinear term
over a set of powers. In Garcia-Verdier et al. (2024), the au-
thors propose a two-step MILP-NLP algorithm, where the ap-
proximate MILP formulation is obtained by replacing the non-
linear constraint with linear constraints, which determine that
a tank maintains the initial crude concentration until the mo-
ment it receives crude oil from a ship. It is worth noting that in
none of the cases is a procedure proposed in case the nonlinear
programming (NLP) solution is infeasible.

Continuing with the description of the system, the tanks
are connected to the crude distillation unit area through a pip-
ing system (mixing pipelines), where the final mixtures of
crudes take place to achieve the desired flows and proper-
ties required by the different crude distillation units (CDUs).
All operations are subjected to multiple rules and constraints,
among them, the arrival over time of different types and
amounts of crude, and the fulfillment of the company produc-
tion plan. Figure 1 shows a schematic of the refinery under
study, which has only storage tanks.
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Figure 1: Schematic of refinery.

The aim of this work is to develop a strategy to address the
nonlinear non-convex constraints generated by blending crude
oils in tanks. First, an approximate MILP model is obtained
based on piecewise approximation using planes. From the so-
lution of this MILP, we fix the binary variables of the original
MINLP and solve the resulting NLP. Finally, if a feasible so-
lution is not obtained, a cut is added to the MILP model, and
the procedure is repeated.

The rest of the paper is structured as follows. The pro-
posed strategy is described in Section 2. The solution proce-
dure for the crude oil operations scheduling MINLP model is
discussed in Section 3. Next, a problem instance and compu-
tational results are reported in Section 4. Finally, conclusions
are given in Section 5.

2. Proposed strategy

As mentioned earlier, in crude oil operations scheduling,
we must consider the blending of crude oils in tanks, which
results in a nonlinear constraint involving products of contin-
uous variables. Therefore, this section presents the strategy
developed to linearly approximate the product of two non-
negative continuous variables. For the sake of clarity and to
avoid complicated nomenclature, let us assume that we want
to approximate the product of the variables x1 and x2. Note
that this approximation can also be applied to the product of
indexed variables.

First, the domain of each variable is partitioned into a
certain number of intervals. Additionally, each quadrilateral
formed by the intersection of intervals is divided into two tri-
angles. For this, the diagonal is drawn from the lower left
vertex to the upper right vertex in each quadrilateral. Then,
from the vertices of each triangle, a plane is defined that will
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approximate the product of these variables in each interval. It
should be noted that depending on the location of the point to
be evaluated, one plane or another will be used. If the point
is located above the diagonal, the equation formed by the ver-
tices at the lower left, upper left, and upper right is used. If
the point is below the diagonal, the equation formed by the
vertices at the lower left, lower right, and upper right is used
(Figure 2).
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Figure 2: Piecewise approximation by planes.

Based on the above premise, the following set of variables
and constraints is defined.

Each variable is disaggregated into two variables: “upper”
and “lower”. The “upper” variable (x1u

i, j for x1, and x2u
i, j for

x2) is related to the upper plane, and the “lower” variable (x1l
i, j

for x1, and x2l
i, j for x2) to the lower plane. Constraints (1) and

(2) represent the disaggregation of variables x1 and x2, re-
spectively. Set I is the set of intervals for x1, and set J is the
set of intervals for x2.

x1 =
∑
i∈I

∑
j∈J

x1u
i, j + x1l

i, j (1)

x2 =
∑
i∈I

∑
j∈J

x2u
i, j + x2l

i, j (2)

Two binary variables (wu
i, j and wl

i, j) are defined to deter-
mine to which quadrilateral the point to be evaluated belongs,
and to which plane (upper or lower). For example, if x1 is in
interval i, x2 in interval j, and the point (x1, x2) is above the
diagonal; then wu

i, j will be equal to 1. The constraints (3)-(6)
establish the upper and lower bounds of each disaggregated
variable in each quadrilateral. The parameters αmin

i and αmax
i

represent the minimum and maximum values, respectively, in
interval i for the variables x1u

i, j and x1l
i, j. Similarly, the pa-

rameters βmin
j and βmax

j represent the minimum and maximum
values, respectively, in interval j for the variables x2u

i, j and
x2l

i, j.

αmin
i ∗ wu

i, j ≤ x1u
i, j ≤ α

max
i ∗ wu

i, j ∀i ∈ I, j ∈ J (3)

αmin
i ∗ wl

i, j ≤ x1l
i, j ≤ α

max
i ∗ wl

i, j ∀i ∈ I, j ∈ J (4)

βmin
j ∗ wu

i, j ≤ x2u
i, j ≤ β

max
j ∗ wu

i, j ∀i ∈ I, j ∈ J (5)

βmin
j ∗ wl

i, j ≤ x2l
i, j ≤ β

max
j ∗ wl

i, j ∀i ∈ I, j ∈ J (6)

The variable z, representing the value of the product of x1
and x2, is also disaggregated (7).

z =
∑
i∈I

∑
j∈J

zu
i, j + zl

i, j (7)

The disaggregated variables are calculated by (8) and (9).
Note that these constraints correspond to the equations of the
upper and lower planes for each quadrilateral, respectively.
Additionally, if a plane is not selected, the value of the dis-
aggregated variable associated with it will be zero.

zu
i, j = β

max
j ∗ x1u

i, j + α
min
i ∗ x2u

i, j − α
min
i ∗ βmax

j ∗ wu
i, j

∀i ∈ I, j ∈ J
(8)

zl
i, j = β

min
j ∗ x1l

i, j + α
max
i ∗ x2l

i, j − α
max
i ∗ βmin

j ∗ wu
i, j

∀i ∈ I, j ∈ J
(9)

Constraint (10) states that only one plane can be selected.

∑
i∈I

∑
j∈J

wu
i, j + wl

i, j = 1 (10)

Depending on whether the distance from the point to the
diagonal is positive (11) or negative (12), the binary variable
wu

i, j or the binary variable wl
i, j can be activated, respectively.

(αmax
i − αmin

i ) ∗ x2u
i, j − (βmax

j − βmin
j ) ∗ x1u

i, j

≥ (αmin
i ∗ βmax

j − αmax
i ∗ βmin

j ) ∗ wu
i, j ∀i ∈ I, j ∈ J

(11)

(αmax
i − αmin

i ) ∗ x2l
i, j − (βmax

j − βmin
j ) ∗ x1l

i, j

≤ (αmin
i ∗ βmax

j − αmax
i ∗ βmin

j ) ∗ wl
i, j ∀i ∈ I, j ∈ J

(12)

3. MINLP solution procedure

As mentioned in the introduction, one of the aim of this
work is to solve the crude oil operations scheduling problem
of a refinery, considering blending in tanks. Below are some
of the constraints that must be considered when formulating
the mathematical programming model for this process:

• Vessel operation

• Vessel to tank allocation

• Tank to unit allocation
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• Mass balance (inventory level)

• Calculation of key property values

• Demurrage and tardiness

• Crude oil concentration at the outlet of a tank (nonlin-
ear)

Due to the page limit, the detailed MINLP model based on
continuous time using slots is omitted. However, we present
the nonlinear constraint which states that if a tank is being un-
loaded, then the crude oil concentration in the outflow must
be equal to the concentration inside the tank. Below, only the
notation of sets and variables involved in this nonlinear con-
straint is provided.

3.1. Notation

3.1.1. Sets
• C = types of crude oils

• N = time slots

• O = operations

• OPO = pair of operations (o, o′), where operation o can
activate operation o′

• R = resources

• RS ⊂ R = tanks

• OUTRr = pair (o, r), o is an output operation of r

3.1.2. Continuous variables
• IINr,n = inventory level in tank r after receiving a load

during slot n

• IINCr,n,c = inventory level of crude c in tank r after re-
ceiving a load during slot n

• VPo,n,o′,n′ = volume transferred by operation o during
slot n to operation o′ assigned to slot n′

• VPCo,n,o′,n′,c = volume transferred of crude c by opera-
tion o during n to operation o′ assigned to n′

3.1.3. Binary variables
• Xo,n,o′,n′ = indicates if (o, n) produces (o′, n′)

Given the nonconvex nature of the nonlinear constraint
(13), it is essential to explore strategies to effectively address
this challenge.

IINr,n ∗ VPCo,n,o′,n′,c = IINCr,n,c ∗ VPo,n,o′,n′

o, o′ ∈ OPO, o ∈OUTRr, r ∈ RS , n, n′ ∈ N, c ∈ C
(13)

In this paper we implement the following procedure to
solve the MINLP model. Initially, we apply the approxima-
tion presented in section 2 to each term of (13), and equate the
variables representing each term. Substituting the nonlinear
equation with the corresponding set of constraints, we obtain
and solve a MILP model. Subsequently, the binary variables

in the original MINLP are fixed based on the solution found
for the MILP, and the resulting NLP model is solved.

If the solution is not feasible, we add the following “no
good” constraint (14) to the MILP model and solve it again,
forcing at least one of the variables to change value. This
procedure is repeated until a feasible solution for the NLP is
obtained or a certain number of iterations is exceeded.

∑
(o,n,o′,n′): ˆXo,n,o′ ,n′=0

Xo,n,o′,n′ +
∑

(o,n,o′,n′): ˆXo,n,o′ ,n′=1

(1 − Xo,n,o′,n′ ) ≥ 1

(14)

4. Results

To assess the performance of the proposed strategy, we
conducted a case study based on problem 2 from Mouret et al.
(2009), with a configuration corresponding to Figure 1. Table
1 summarizes the problem data. Additionally, the suggested
number of time slots is eight. We solved the problem using
GAMS 43.2 software, Gurobi 9.5.2 for MILPs, and CONOPT
4.29 for NLPs on a computer equipped with an Intel Core i9-
13900K 3.00 GHz processor and 128 GB of RAM.

The example has been solved in three ways: by apply-
ing piecewise approximation by planes (PAP), implementing
piecewise McCormick approximation (MCC), and using the
DICOPT solver. The objective function aims to minimize ves-
sel demurrage and tardiness costs while maximizing the profit
from processed crude.

Table 2 shows the objective function values and computa-
tion times for each case. It also details the number of continu-
ous and binary variables, as well as the number of constraints
for the MILP models based on PAP and MCC, and for the
MINLP model solved with DICOPT. The number of contin-
uous variables and constraints for the NLP models associated
with PAP and MCC equals that of the MINLP model. It should
be noted that both strategies, PAP and MCC, used a single in-
terval. Also, from Table 2, we can see that the PAP and DI-
COPT solutions yielded a profit of $17.500.000, whereas the
MCC solution resulted in a lower profit of $16.900.000. In
terms of model size, i.e. number of variables and constraints,
we can notice that the PAP model is one order of magnitude
larger than the other two. However, it also has the shortest
solution time.

Figure 3 depicts a Gantt chart of the PAP solution. As
shown, ships start and finish their unloading operations on
schedule. Specifically, the unloading of ship 1 leads to the
loading of tanks 1 and 4 (operations O4 and O7, respectively).
Ship 2 unloads into tank 5, and ship 3 unloads into tank 6.
Tanks 2 and 3 receive no cargo. Finally, it should be noted that
the CDUs operate continuously (operations O16 and O17).
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Table 1: Problem data.

Vessel
Arrival time

(day) Cargo
Volume
(Mbbl) Mixture Specification

Demand
(Mbbl)

1 0 100% A 1000 1 [0,01, 0,02] 1500
2 4 100% B 1000 2 [0,025, 0,035] 900
3 10 100% C 1000 3 [0,04, 0,048] 800

Tank
Capacity
(Mbbl)

Initial
composition

Amount
(Mbbl) Crude

Key
property

Gross margin
($/Mbbl)

1 [0, 1000] 100% A 200 A 0.01 1
2 [0, 1000] 100% B 500 B 0.03 3
3 [0, 1000] 100% C 700 C 0.05 5
4 [0, 1000] 100% D 300 D 0.0167 1.67
5 [0, 1000] 100% E 300 E 0.03 3
6 [0, 1000] 100% F 300 F 0.0433 4.33

Scheduling horizon 15 days
Unloading and

transfer flowrate
(Mbbl/day)

[0, 500]
Distillation

flowrate [50, 500]

Table 2: Solutions and model statistics.
Strategy Profit ($) Continuous variables Binary variables Constraints Time (s)

PAP 17.500.000 100.879 20.536 182.952 50,6
MCC 16.900.000 24.271 2.680 57.719 70,5

DICOPT 17.500.000 17.935 2.104 26.279 123,3
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Figure 3: Gantt chart of the solution applying piecewise approximation by
planes.

5. Conclusion

We presented a strategy for handling the product of two
continuous variables based on piecewise linear approximation
using planes. The main motivation for developing this strategy
was to address the nonlinear constraint present in crude oper-
ations scheduling problems due to tank blending. We solved a
case study based on an example from the literature and com-
pared it with other strategies. Despite the PAP approach re-
sulting in a larger model than the alternatives, it achieved the
shortest solution time and obtained the highest objective func-
tion value alongside DICOPT. Future work will focus on refin-
ing the strategy formulation to reduce the number of variables
and constraints involved.
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