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Multi-objective & multi-model PI/PID controller tunning 

Resumen 

Este estudio aborda el desafío de modelar un controlador para una turbina eólica de 15 MW propuesta por la Universidad de 

Córdoba. Ante la falta de disponibilidad de un modelo que represente el funcionamiento interno de la turbina, se resolvió 

utilizando la herramienta de Identificación de Sistemas en MATLAB. Se empleó el modelo lineal ARMAX, y se aplicaron los 

criterios de Vinnicombe y Akaike para abordar múltiples modelos, objetivos y seleccionar las mejores funciones de 

transferencia. Inicialmente, se obtuvieron 15 funciones de transferencia. Posteriormente, el controlador PI propuesto se ajustó 

a un PID con un filtro utilizando las cuatro funciones de transferencia encontradas mediante el uso del algoritmo de 

optimización multiobjetivo spMODEx, encontrando ganancias óptimas con un Kp=-8, Ti=12, Td=0.9754, y un filtro=10, lo que 

resultó en un J=0.4602, superando óptimamente el valor propuesto por el desafío, J=0.5206. Las ganancias encontradas en 

este estudio demostraron su viabilidad para operar en una amplia gama de sistemas, respaldando un enfoque de múltiples 

modelos 

Palabras clave: Diseño de sistemas de control, Sistemas energéticos, Control de recursos renovables, estimación y filtracón, 

Algoritmos evolutivos para control óptimo 

Multi-objective & Multi-model PI/PID Controller Tunning

Abstract 

This study addresses the challenge of modeling a controller for a 15 MW wind turbine proposed by the University of 

Córdoba. Faced with the unavailability of a model representing the internal workings of the turbine, it was resolved using the 

System Identification tool in MATLAB. The linear ARMAX model was employed, and the Vinnicombe and Akaike criteria 

were applied to address multiple models, objectives, and select the best transfer functions. Initially, 15 transfer functions were 

obtained. Subsequently, the proposed PI controller was adjusted to a PID with a filter using the four transfer functions found 

through the use of the multi-objective optimization algorithm spMODEx, finding optimal gains with a 𝐾𝑝 = −8, 𝑇𝑖 = 12, 𝑇𝑑 =
0.9754, and a 𝑓𝑖𝑙𝑡𝑒𝑟 = 10, resulting in a 𝐽 = 0.4602, optimally surpassing the value proposed by the challenge, 𝐽 = 0.5206. 

The gains found in this study demonstrated their viability to operate across a wide range of systems, supporting a multi-model 

approach. 

Keywords: Control system design, Energy systems, Control of renewable resources, estimation and filtering, Evolutionary 

algorithms for optimal control 
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The growing necessity for renewable energy arrived 

as a challenge for contemporary engineering, as it becomes 

necessary to seek power sources that haven’t yet been 

completely understood. In this scenario, mechanisms were 

created to generate power through wind (Ackermann, 2012), 

which have evolved to the current wind turbines. However, as 

with any electromagnetic system, this has some limitations, it 

is necessary that certain measures aren’t exceeded, so the 

internal functioning of the turbine isn’t harmed. One of these 

measures is the power generated by the turbine, which should 

stay mostly constant during the generation. However, the 

power source for the turbine, wind, isn’t constant, and, at the 

moment, there’s no mechanism to predict with precision its 

intensity and direction, mainly by the fact it's not a linear 

measure. Therefore, one of the main problems that appeared 

is related to how to control the turbine’s power generation 

without taking into consideration that the power source is 

completely unpredictable (Hau, 2013). 

In this context, the University of Córdoba proposed 

a challenge to undergraduates and postgraduates to model a 

control system for wind turbines (Garrido, et al., 2024). Since 

the model that represents the internal working of the turbine 

wasn’t available, first it was necessary to identify this model. 

For the identification of the proposed model, data provided by 

the University was used, which were related to the turbine 

inputs and outputs, and possible disturbances that may happen 

in the power generation process. The data provided was: 

Vx: is the wind velocity. Since this disturbance isn’t 

predictable, it can’t be controlled. Its variation is defined by 

the University, with a range from 11m/s to 25m/s. 

Pg: is the power generated by the turbine, measured 

in MW. It’s ideal to stay constant and equal to 15(MW), being 

one of the controlled variables. This variable is defined as the 

product of the Electromagnetic Torque (𝑇𝑒𝑚)  by the Angular 

Velocity (𝜔𝑔). However, the torque value will be treated as 

constant, making the generated power dependent only of 

Angular Velocity (𝜔𝑔). 

 

𝜔𝑔: The turbine’s angular velocity, measured in 

rad/s. Its maximum variation must be between -2 (rad/s) and 

2 (rad/s). 

 

𝑀𝑒𝑗𝑒: Torque of the generating shaft, measured in 

𝑀𝑁 ∗ 𝑚. According to the University, must take in 

consideration that there may not have a great variation in this 

parameter. 

 

Servo pitch: It’s the turbine’s blade’s real angle 

pitch, considering its internal servo. Measured in degrees, will 

be treated as constant and equal for all three blades. 

Pitch control: Turbine’s blade’s angle pitch, 

considered the same for the three blades. Can vary from 0 to 

90 º, however, in normal conditions, usually doesn’t surpass 

30 º. 

Tem: Turbine’s electromagnetic torque. Will be 

treated as a constant equal to 19786767.5 (𝑁𝑚). 

The University made available multiple files, 

containing a Matlab script to run simulations and benchmark 

tests, Simulink file that has both the turbine and PI controller 

models, and the Open Fast compiler, which is used to properly 

simulate the turbines. The default gains for the PI are: -6, and 

–0.6, for the proportional, and integral parts respectively. This 

work’s objective is to implement another controller with a 

similar or better performance than the proposed controller. 

 

2. Methods and tools 

In this study it was used a multi-model and multi-

objective approach to determine a better controller than that 

of the proposed by the challenge. Such an approach 

determined the methods and tools used in this challenge, 

since, according to Huilcapi, et al. (2019), using a multi-

model approach to design a controller can provide an 

optimized response compared to the approach with a single 

model. The author explains this by stating that designing a 

controller for each representative function of a system and 

then using the Vinnicombe method to find a global controller 

increases the chances of finding a controller consistent with 

the model to be controlled, especially in black-box models 

where the actual plant function is unknown (Vinnicombe, 

1993). Therefore, it used the Matlab System identification 

toolbox, specifically the ARMAX polynomial setting to 

identify the proposed system, followed by the Vinnicombe 

metric to determine which transfer functions were similar. 

Finally, the spMODEx algorithm was used to produce both 

the PI and PID gains used.   

2.2.  System Identification 

The Matlab software's System Identification tool 

serves to identify black-box systems, which are those where 

physically depicting their operation is unfeasible, 

necessitating their representation through inputs and outputs 

(Zhang, 2010). As the University did not provide the function 

representing the turbine's internal operation, the decision was 

made to employ this tool for system identification. 

Therefore, Matlab’s System Identification Toolbox, 

basically allows to choose which method will be used to 

identify the transfer functions, utilizing input data previously 

chosen by the user. The input and output data were made 

available by the University, making it possible, with multiple 

steps generations, to build a database coherent with the one 

asked by the Toolbox. 

In this study, the researchers used the linear 

ARMAX (Autoregressive Moving Average with Extra Input) 

model as the reference structure for the "System 

Identification" tool. MATLAB employs machine learning 

techniques to solve the estimation of its models (MathWorks, 

2024). Additionally, the least squares method is used for 

greater accuracy, and it is important to manually define the 

polynomial order in [na nb nc nk] for ARMAX. The 

advantages of using this model include estimation 

covariances (parameter uncertainties) and the quality of the 

fit between the estimated and measured data. The ARMAX 

model structure can be seen in (1) (Ljung, 1999). 

 

ARMAX MODEL STRUCTURE:  



Callas, E. et al. / Jornadas de Automática, 45 (2024) 

 

 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑎
𝑦(𝑡 − 𝑛𝑎) = 𝑏1𝑢(𝑡 − 𝑛𝑘) +

⋯ + 𝑏𝑛𝑏
𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1) + 𝑐1𝑒(𝑡 − 1) + ⋯ +

𝑐𝑛𝑐
𝑒(𝑡 − 𝑛𝑐) + 𝑒(𝑡)                                                            (1)     

                                                              

Where:  

𝑦(𝑡): Output at time t. 

𝑛𝑎: Number of poles. 

𝑛𝑏: Number of zeros plus 1. 

𝑛𝑐: Number of C coefficients. 

𝑛𝑘: Number of input samples that occur before the input 

affects the output, also called the dead time in the system. 

𝑦(𝑡 − 1) … 𝑦(𝑡 − 𝑛𝑎): Previous outputs on which the current 

output depends. 

𝑢(𝑡 − 𝑛𝑘) … 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1): Previous and delayed 

inputs on which the current output depends. 

𝑒(𝑡 − 1) … 𝑒(𝑡 − 𝑛𝑐): White-noise disturbance value. 

 

On the other hand, the University of Cordoba 

proposed the following model, revealing only the inputs and 

outputs: 

 

 
Figure 1: Model proposed by the University of Cordoba 

 

In Image 1, it can be observed that the inputs to this 

function are the blade pitch angle and torque as a constant. 

Among all the outputs of the plant, the only one with data 

provided by the University is the angular velocity. The others 

will be treated as constants or disturbances that do not have a 

feasible implementation.  

This way, the initial and final input steps values were 

also chosen, and when would happen, to get more diversified 

functions. These values vary from 30 to 90, while the time for 

the step occurrence were chosen between the options 1, 40 or 

100 seconds. The generated functions were on the discrete 

domain “z”, so, it was necessary to utilize a command to 

transform the functions to continuous time, on the domain 

“s”. 

With this data, a total of 15 transfer functions were 

found. Additionally, to optimize this entire process, the 

researchers used the Akaike criterion (AIC). This criterion 

was proposed as an approach to balance the model's 

complexity and fit. Its utilization facilitates the avoidance of 

overfitting by imposing a penalty on overly complex models, 

constituting a fundamental tool for more effective model 

selection in the advancement of system identification 

(Akaike, 1974). The following AIC structure was used:  
 

𝐴𝐼𝐶 = 𝑁 ∗

log (det (
1

𝑁
∑

𝜀(𝑡, 𝜃̃𝑁) (𝜀(𝑡, 𝜃̃𝑁))
𝑇

)) + 2𝑛𝑝 +

𝑁 ∗ (𝑛𝑦 ∗ (log(2𝜋) + 1))
                            𝑁

1 (2) 

 

Where:  

𝑁  : is the number of values in the estimation data set. 

𝜀(𝑡):  is a 𝑛𝑦 − 𝑏𝑦 − 1 vector of prediction errors.  

𝜀(𝑡, 𝜃̃𝑁): model residuals. 

𝜃̃𝑁 : represents the estimated parameters. 

𝑛𝑝: is the number of estimated parameters. 

𝑛𝑦: is the number of model outputs. 

𝑡: It is an index that represents each individual observation in 

the data. From the first (𝑡 = 1) to the last (𝑡 = 𝑁). 

𝑇: it is the transpose of the residual matrix. 
 

Additionally, when comparing multiple proposed 

models and applying a variation of AIC, it is possible to 

evaluate the robustness of each model (Burnham, et al., 

2024). This combination of concepts is particularly suitable 

when working with various models and aiming to handle a 

larger volume of data with the fewest possible variables 

(Ljung, 1999).  

It’s important to say that MAtlab’s Toolbox already 

implements Akaike’s method to each function generation, 

therefore, to each data import and method selection, only one 

function was generated, because the other ones had already 

been filtered by Akaike’s criterion. 

Table 1 shows the functions gathered by the methods 

previously cited. The sampling time used was 0.01 seconds, 

and the steps initial value was always 0. It must be considered 

that “V.F” stands for the step final values, and “T” stands for 

the time the step was applied. “F.T” stands for the transfer 

function of each configuration. The step final values refer to 

the angle on the turbine’s blades. Attention should be paid to 

the fact that the final value to be controlled (angular velocity) 

was included on the data imported to the System Identificator. 

 

Table 1: Identified Functions 

T V.F F.T. 

1 30 𝑃1 =
−0.001959𝑠  − 0.01179

𝑠2 + 3.178𝑠 + 0.1249
 

40 30 𝑃2 =
−0.002392𝑠  − 0.002355

𝑠2 + 1.178𝑠 + 0.01155
 

100 30 𝑃3 =
0.0001676 𝑠 +  0.002403

𝑠^2 +  4.264 𝑠 +  0.007993
 

1 45 𝑃4 =
−0.000363𝑠  − 0.01267

𝑠2 + 5.841𝑠 + 0.2786
 

40 45 𝑃5 =
−9.281𝑒 − 05𝑠  − 0.00196

𝑠2 + 1.729𝑠 + 0.01479
 

100 45 𝑃6 =
0.0004289𝑠 − 0.002137

𝑠2 + 2.153 + 0.008066
 

1 60 𝑃7 =
0.001599𝑠 − 0.01094

𝑠2 + 7.887𝑠 + 0.3841
 

40 60 𝑃8 =
0.0004515𝑠 − 0.001585

𝑠2 + 2.059𝑠 + 0.01612
 

100 60 𝑃9 =
0.0001848𝑠 − 0.00161

𝑠2 + 2.295𝑠 + 0.007989
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1 75 𝑃10 =
−0.0005612𝑠 − 0.006725

𝑠2 + 6482𝑠 + 0.3308
 

40 75 𝑃11 =
0.0003496𝑠 − 0.001342

𝑠2 + 2.264𝑠 + 0.01705
 

100 75 𝑃12 =
0.0001169𝑠 − 0.001436

𝑠2 + 2.644𝑠 + 0.008743
 

1 90 𝑃13 =
−0.0002986𝑠 − 0.003043

𝑠2 + 2.202𝑠 + 0.1838
 

40 90 𝑃14 =
−3.048 ∗ 10−5𝑠 − 0.00116

𝑠2 + 2.138𝑠 + 0.0227
 

100 90 𝑃15 =
0.0001722𝑠 − 0.001009

𝑠2 + 2.101𝑠 + 0.008874
 

 

After analyzing these functions, only the negative functions 

were selected through the final value theorem. This was 

necessary because the controller proposed by the University 

is unable to control positive functions (Garrido, et al., 2024). 

Therefore, function P3 was eliminated. 

This allows researchers to analyze the logic that 

should be reflected in their transfer functions; firstly, they 

verify the stability of the systems under consideration. This 

means that the final value of the systems response is equal to 

the limit of the transfer functions as time tends to infinity, 

evaluated at 𝑠 = 0. The sign of the final value indicates 

whether the system's response tends upwards (positive) or 

downwards (negative) as time progresses indefinitely, 

providing crucial insights into the long-term behaviour of the 

systems in the time domain (Chen, et al., 2007).  

Therefore, a total of 14 functions remained. To filter 

them, the Vinnicombe method was used, which is based on 

the proximity of the plants found and whether they can or 

cannot be controlled by the same controller (Vinnicombe, 

1993). To make this test, a heatmap was built based on 

Vinnicombe’s metric values, for better visualization of the 

distance between the functions. Consequently, functions 

farther apart from each other were selected, as it is considered 

that the controller should be able to control the plant in as 

many situations as possible. Thus, the functions found totaled 

4: 

𝑃1 =
−0.001959∗s −0.01179

𝑠2+3.178∗s+0.1249
                                                          (3) 

 

𝑃6 =
0.0004289∗s −0.002137

𝑠2+2.153∗s+0.008066
                                                                (4) 

 

𝑃12 =
0.0001169∗s −0.001436

𝑠2+ 2.644∗s+0.008743
                                                              (5) 

 

𝑃13 =
−0.0002986∗s −0.003043

𝑠2+2.202∗s+0.1838
                                                           (6) 

 

Utilizing the controller provided by the University, 

it was posible to confirm that, despite being far from each 

other, these functions were controlled by the same controller. 

2.3.  Multi objective 

In engineering, situations often arise where multiple 

objectives must be addressed simultaneously, potentially 

leading to conflicts as improvements in some aspects may 

worse others. To address these challenges, engineers employ 

multi-objective optimization techniques (MOP), aiming to 

find sets of optimal solutions rather than a single definitive 

solution. These optimal solutions represent trade-offs 

between design objectives, with some inherently better than 

others. This collection of optimal solutions is known as the 

Pareto front. In practical applications, optimization 

algorithms typically identify sets of solutions rather than a 

singular solution (Huilcapi, et al, 2019). A design concept 

refers to an idea aimed at solving a specific problem, with 

each concept corresponding to a proposed MOP and its 

associated Pareto front. In the realm of process control, a 

design concept may align with a specific control structure or 

a particular combination of inputs and outputs. For instance, 

in a multivariable process defined by a transfer function 

matrix with multiple inputs and outputs, it is essential to 

define parameters and conditions for developing an effective 

controller (Huilcapi, et al, 2019). By comparing the Pareto 

fronts linked to each design concept, engineers can utilize 

personal preferences to select a suitable controller for the 

plant. Moreover, if the chosen controller fails to fully meet 

expectations, engineers can iterate the process across various 

scenarios, adjusting parameters and conditions as needed. 

This adaptability underscores the advantages of employing 

multi-objective optimization techniques. 

2.4.  Selection criterion 

The article provided by the University specifies the 

parameters to be used for defining an effective controller 

Garrido, et al., 2024). As seen in (7), (8), (9), (10), and (11). 

𝐽(𝐶𝑃) = w1 ∗  R1 +  w2 ∗ R2 +  w3 ∗ R3 +  w4
∗ R4    (7) 

Where: 

𝐽(𝐶𝑃): Global performance index 

w1, w2, w3, w4: The weights of each parameter (when 

summed, equal 1). These weights have not been provided. 

R1 =
𝑅𝑀𝑆𝐸(𝑤𝑔)

0.5
                                                                        (8) 

R2 =
𝑅𝑀𝑆𝐸(𝑃𝑔)

1
                                                                        (9) 

R3 =
𝑅𝑀𝑆𝐸(𝑀𝑒𝑗𝑒̇ )

1
                                                                      (10) 

R4 =
𝑅𝑀𝑆𝐸(𝛽̇)

2
                                                                       (11) 

 

𝑤𝑔: Turbine angular velocity. 

𝑃𝑔: Power generated by turbine. 

𝑀𝑒𝑗𝑒̇ : Variation (derived) of generator shaft torque. 

𝛽̇: Variation (derived) of the turbine pitch angle. 

𝑅𝑀𝑆𝐸(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟): It represents the root mean square error 

for each analyzed parameter. The values of R1, R2, R3, and 

index value, the worse the controller performance. However, 

since the controller proposed by the University has a 𝐽(𝐶𝑃) 

of 0.5206, the aim is to find a controller with an index 

approximately equal or better. 

3.  Results 

3.1.  SpMODEx configuration 

To properly tune the PI gains, it was used a multi-

objective optimization Algorithm, known as spMODEx 

available at the MATLAB file exchange (Reynoso-Meza, 

2024). Using the four transfer functions identified that 
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represent the system, the algorithm was used to identify 

possible PI gains, specifically Kp, and Ti. The algorithm was 

set up using the proposed PI gains as a general base line. By 

evaluating the cost function of the default gains provided by 

the challenge it was able to determine the general idea of the 

optimization bounds, and the physical matrix. In the end it 

was possible to configure the spMODEx with the following 

parameters: 

Strategy: Spherical Pruning  

Norm: Physical with the following matrix: 
0.0 50 70 90 100 200
0.0 1 1.5 2 2.5 10
0.0 1 1.7 2.0 2.5 43

(11) 

Once configured the algorithm was run in a desktop computer 

with the following specifications: CPU: Intel(R) Core(TM) 

i7-4790K CPU @ 4.00GHz   4.00 GHz, GPU: NVIDIA 

GeForce GTX 970, RAM: 16.0GB, MATLAB version: 

2024a. 

3.2.  PI gains 

Initially spMODEx, was configured with the 

following optimization bounds: Kp in the range of -12 to near 

zero, and Ti in the range of 12 to 36. By testing each Kp, and 

Ti generated by the algorithm in the benchmark script 

provided by the challenge it was able to notice that most of 

the better scores were found in the range of -8 to -5. 

Therefore, the optimization bounds for the multi-objective 

algorithm were changed to reflect the better scores. The 

following Pareto front is the result of the multi-objective 

algorithm with the new optimization bounds. It can be 

observed that in algorithm produced a total of 18 gains in the 

optimization bounds.  

 

 
Figure 2: Resulting Pareto Front for PI gains 

 

Each gain was tested individually in the benchmark 

script, the gains found in the middle of the front performed 

better than the gains that were in both extremes of the front. 

The table below contains the gains found at both extremes of 

the graph, and the best performing gain in the middle.  

Table 1: PI gains and their respective performance. 

Kp Ti Ki JTotal 

-8.0000 20.0000 -0.4 0.5369 

-7.4169 25.2306 -0.29396 0.5214 

-5.0000 24.8796 -0.20096 0.5668 

 

Even though the best gains for the PI found by the 

algorithm had a slightly larger JTotal score, since it was used 

a multi-model approach, it is expected to be able to be used in 

a wider array of circumstances in comparison to the default 

gains. 

3.3.  PID gains 

Based on the results, of the PI gains, the multi 

objective algorithm’s optimizations bound was changed to 

search for PID gains to test their performance. Initially the 

optimization bounds were defined as: Kp = -8 to -5, Ti = 12 

to 36, and Td = 0 to 1. The algorithm generated a total of 21 

possibles gains, as it can be seen in the Pareto front below.  

 

 
Figure 3: Resulting Pareto Front for PID gains 

 

In this context, a PID structure outperformed the PI 

structure. With its best gain having a JTotal score of 0.4940, 

having a better performance than the default PI proposed in 

this challenge. The following table shows the gains, in the 

extremes of the pareto front, and in the middle of the front. 

Unlike the PI, the best gain was found in the upper extreme 

of the front. Therefore, it can be presumed that in the context 

of the PID gains, the lower the TV – Total input Variation is 

more critical than the IAE – Integral Absolute Error.  

Table 2: PID gains and their respective performance. 

Kp Ti Td JTotal 

-8.0000 12.0000 0.9754 0.4940 

-8.0000 21.0363 0.3236 0.5136 

-5.0000 29.5318 0.2519 0.5752 

 

 To achieve a better result, with the PID structure a 

derivative filter was applied in the Simulink PID block. With 

the filter with a value of 10, the JTotal went from 0.4940 to 

0.4602 The graphs below show the response of the system 

with a PID controller in a closed loop. 

 

  
Figure 4: Closed Loop response of the system with the PID controller 

 

Therefore, the best result found was a PID controller 

with a filter with the following parameters: Kp = -8.0000, Ti 

= 12.0000, Td = 0.9754, filter = 10. Beyond outperforming 

the proposed PI in the challenge, due to the fact that a multi-
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model approach can be used, it can be expected that this 

controller can be used in a wider variety of models when 

compared to that of the proposed PI. 

 

4. Conclusion 

This scientific study presents a proposition about a 

controller for a 15MW wind generator. After a series of tests 

using models found in the System Identification toolbox, with 

a multi-model and multi-objective approach, a PID controller 

was developed that can effectively manage the proposed 

turbine model within the specifications published by the 

University of Córdoba. Given that the controller proposed by 

the University had a 𝐽(𝐶𝑃) of 0.5206, and the controller 

proposed in this work has a 𝐽(𝐶𝑃) equal to 0.4602 it can be 

considered an optimal controller for the process. Furthermore, 

graphs using Open Fast showed that the power of the wind 

turbine and the 𝑀𝑒𝑗𝑒 parameter had a good response, 

considering the overshoots of the wind velocity over time. As 

a future direction for this research, the evaluation and 

implementation of nonlinear models such as NARMAX  and 

Hammerstein-Wiener, along with Gaussian processes, to 

estimate nonlinear systems and subsequently estimate a 

transfer function of the same dynamic process (wind turbine) 

or a different process, is proposed (Vance, et al., 2017 ). This 

research could involve applying Gaussian process techniques 

in system identification to capture uncertainty and variability 

in the system data, thereby enhancing estimation accuracy 

and robustness. Furthermore, specific application cases where 

uncertainty and variability are critical, such as in process 

control systems in variable environments (utilizing the multi-

objective concept), could be investigated. This study 

highlights a multipurpose and integrated approach that could 

provide a more comprehensive and accurate representation of 

nonlinear system behavior, thereby enhancing process design 

and control across various industrial and scientific fields. 

5. Acknowledgements 

This work was partially supported by the grant 

CNPq Multiobjective Computational Intelligence 

PQ2/310195/2022-5, and the “projeto universal” 

408164/2021-2. 

6. References  

Estimate parameters of ARX, ARIX, AR, or ARI model - MATLAB arx - 

MathWorks América Latina. (s/f). Mathworks.com. Recuperado el 25 de 

mayo de 2024, de https://la.mathworks.com/help/ident/ref/arx.html 

Ljung, L. System Identification: Theory for the User, Second Edition. Upper 

Saddle River, NJ: Prentice-Hall PTR, 1999. See chapter about computing the 

estimate. 

V. Huilcapi, X. Blasco, J. M. Herrero and G. Reynoso-Meza, "A Loop 

Pairing Method for Multivariable Control Systems Under a Multi-Objective 

Optimization Approach," in IEEE Access, vol. 7, pp. 81994-82014, 2019, 

doi: 10.1109/ACCESS.2019.2923654.MATH 

Ackermann, Thomas, ed. Wind power in power systems. John Wiley & Sons, 

2012. 

GARRIDO, Juan, et al. Concurso en Ingeniería de Control 2024: Control de 

una turbina eólica de gran potencia II. Dpto. Ingeniería de Control y 

Automática, Universidad de Córdoba, 2024. 

Zhang, P. (2010). Advanced Industrial Control Technology. Nova York. 

Vinnicombe, G. (1993). Measuring Robustness of Feedback Systems. PhD 

thesis, University of Cambridge, Dept. of Engineering. 

Akaike, H. (1974). "A new look at the statistical model identification". IEEE 

Transactions on Automatic Control, 19(6), 716-723.  

Burnham, K. P., & Anderson, D. R. (2002). "Model Selection and 

Multimodel Inference: A Practical Information-Theoretic Approach". 

Springer. 

 J. Chen, K. H. Lundberg, D. E. Davison and D. S. Bernstein, "The Final 

Value Theorem Revisited - Infinite Limits and Irrational Functions," in IEEE 

Control Systems Magazine, vol. 27, no. 3, pp. 97-99, June 2007, doi: 

10.1109/MCS.2007.365008.  

HAU, Erich. Wind Turbines: Fundamentals, Technologies, Application, 

Economics. 3. Ed. Munique: Springler, 2013. 

Vance, P. J., Das, G. P., Kerr, D., Coleman, S. A., McGinnity, T. M., 

Gollisch, T., & Liu, J. K. (2017). Bioinspired approach to modeling retinal 

ganglion cells using system identification techniques. IEEE Transactions on 

Neural Networks and Learning Systems, 29(5), 1796-1808. 

Gilberto Reynoso-Meza (2024). eXtended Multi-objective Differential 

Evolution with Spherical Pruning, < spMODEx > 

algorithm (https://www.mathworks.com/matlabcentral/fileexchange/65145-

extended-multi-objective-differential-evolution-with-spherical-pruning-

spmodex-algorithm), MATLAB Central File Exchange. Retrieved May 30, 

2024

 

 

 

 


