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Abstract

Perception systems are fundamental in outdoor robotics, as their correct functionality is essential for tasks such as terrain
identification, localization, navigation, and analysis of objects of interest. This is particularly relevant in search and rescue
(SAR) robotics, where one current research focuses on the mobility and traversal of unstructured terrains (commonly resulting
from natural disasters or attacks) using quadruped robots. 3D sensory systems, such as those based on 360-degree LiDAR, tend
to create dead zones within a considerable radius relative to their placement (typically on the upper part of the robot), leaving the
locomotion system without terrain information in those areas. This paper addresses the problem of eliminating these dead zones
in the robot’s direction of movement during the process of environment reconstruction using point clouds. To achieve this, a
ROS-based method has been implemented to integrate ”n” point clouds from different sensory sources into a single point cloud.
The applicability of this method has been tested in generating elevation maps of the environment with different resolutions, using
the quadruped robot ARTU-R (A1 Rescue Task UPM Robot) and short- and long-range RGB-D sensors, strategically placed on
its lower front part. Additionally, the method has demonstrated real-time functionality and robustness concerning the issue of
frame association in the fusion of information from decentralized sources. The code is available to the community in the authors’
GitHub repository https://github.com/Robcib-GIT/pcl_fusion.
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1. Introduction

The search and rescue robots field has experienced re-
markable growth in recent years to improve the efficiency and
safety of missions in hazardous environments resulting from
natural or human-caused disasters. These advances seek to
protect the lives of rescue brigades, conducting initial inspec-
tions in search of victims. One of the primary goals of this area
of robotics is to provide support to these brigades during post-
disaster interventions, safeguarding their lives while assisting
in the detection of victims (Whitman et al., 2018; Wannous
and Velasquez, 2017; Cruz Ulloa et al., 2021, 2023a; Ulloa
et al., 2023).

Some real-world situations where these interventions have
been utilized include events such as the attack on the Twin

Towers (United States - 2001) (Blackburn et al., 2002), the
Fukushima nuclear accident (Japan - 2011) (Eguchi et al.,
2012), the Amatrice earthquake (Italy - 2016) (Kruijff et al.,
2016), and the Mexico City earthquake (Mexico - 2017)
(Whitman et al., 2018). Post-disaster events create environ-
ments with unstructured terrain that hinder rescue missions. In
this context, quadruped robots have demonstrated great skill
navigating these terrains, outperforming conventional robots
(wheel, leg, track locomotion) Cruz Ulloa et al. (2023b);
Cruz Ulloa (2024).

On the other hand, perception systems based on lidar or in-
frared projection commonly tend to leave blind spots that are
not captured and, therefore, not included in subsequent recon-
struction phases Benedek et al. (2021); Li and Ibanez-Guzman
(2020); Li et al. (2024). These blind spots tend to encompass
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a cone relative to the sensor’s vertical axis and vary depending
on the height of placement, leaving the robot without a field
of vision within a radius (typically 1.5 [m]), which presents a
problem for planning in that workspace, especially for legged
robots. Figure 1 shows an environment reconstruction car-
ried out using a front-facing RGB-D camera, distinguishing a
radius of 1.7 [m] around the robot, over which no elevation
information is available, while the 2D lidar system assumes it
to be free space.

Figure 1: Reconstruction of an elevation map using a front-facing RGB-D
sensor, with a blind spot around the robot.

This paper proposes a method to minimize blind spots in
the perception system of legged robots. A method based on
a Robot Operating System (ROS) has been implemented. It
can receive multiple inputs (depth images and point clouds),
preprocess them, integrate the ”n” point clouds from different
sources into a single cloud, and post-process them to associate
them with the robot’s reference system.

The method was tested using the quadruped robot ARTU-
R (A1 Rescue Task UPM Robot), strategically equipped with
short and long-range RGB-D cameras in its forward field of
vision. Elevation maps were reconstructed using this percep-
tion data, evaluating different resolutions and the method’s
functionality. The main results demonstrated the minimiza-
tion of blind spots and real-time operational capability.

This manuscript is structured as follows: Section 2
presents the proposed materials and methods, Section 3 dis-
cusses experiments and results, and Section 4 highlights the
main conclusions and future work arising from this develop-
ment.

2. Methodology

2.1. Materials

The quadruped robot ARTU-R from Unitree, model A1,
was used for this development. It was equipped with two
RGB-D sensors: the first one (A. Realsense D435i) has a
working range of up to 10 meters depending on the environ-
ment, and the second one (B. Realsense SR305) is typically
used for short-range applications with a range between 0.2 to
1.5 meters, as shown in Figure 2.

Figure 2: The implementation was developed using the quadruped robot
ARTU-R, equipped with two RGB-D cameras mounted on its front-lower sec-
tion to maximize the reconstructed area during movement.

The arrangement of the sensors, with camera A mounted
on the front and camera B inclined at an angle of 60 degrees
relative to the robot’s horizontal axis, has been fixed in place
using mechanical couplings. This configuration (position and
orientation relative to the centre of the robot) has been repli-
cated using fixed frames in the robot’s .xacro model, shown
as a reference in the bottom right corner of Figure 2. The
model and CAD files of the robot used in the simulation pro-
cess to represent the robot’s states are available in the au-
thors’ GitHub repository in Appendix A. The development
and experimentation phase was conducted at the Centro de
Automática y Robótica (UPM-CSIC) facilities (40◦26’21.5”
N 3◦41’18.1” W)

2.2. Methods

Figure 3 illustrates the process of point cloud fusion
from multiple inputs (depth sensors and lidar). Each depth
sensor captures data (Depth S can 1, Depth S can 2, ...,
Depth S can n), which is processed using the sensor msgs
and cv bridge libraries to transform image pixel coor-
dinates into 3D point cloud coordinates (Point cloud 1,
Point cloud 2, ..., Point cloud n). At this stage, point clouds
directly from lidar sensors (Point cloud n + 1) can also be in-
corporated.

The point clouds are referenced to a common frame
(/t f re f erenced) for alignment. Then, they are fused into a
single point cloud (Fused cloud) through processes of resiz-
ing, downsampling, noise removal, rotation, and translation.
Resizing ensures uniform point density; downsampling re-
duces computational load; noise removal improves data qual-
ity; rotation correctly aligns the clouds in three-dimensional
space; and translation positions the clouds in the common ref-
erence frame.

The result is a fused point cloud that provides a detailed
and accurate representation of the environment. It integrates
the advantages of the different sensors used, particularly those
of short—and long-range. These algorithms are available in
Appendix A.
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Figure 3: Schematic of the functionality of the implemented system for sen-
sor integration from different sources.

In Figure 4, the upper left section shows the depth image
from camera A with intensity variations; dark areas represent
closer regions, while light areas indicate greater distances.
The upper section shows the depth image from camera B. The
respective lower sections display the local point clouds asso-
ciated with the respective frames, coloured according to the
vertical axis relative to the maximum height. The point cloud
associated with camera B complements the first one, overlap-
ping the area between the robot’s legs and the beginning of
that cloud.

Figure 4: Partial reconstructions with each camera of ARTU-R are shown,
including the depth images and the generated point clouds. (Left) The front
camera has a range of up to 5 meters but features a blind spot within a 60 cm
radius. (Right) The lower camera covers the blind spot of the front camera.

3. Experiments and Results

3.1. Variation of functionality parameters.

For the experimental phase, optimal parameters for the
functionality of the combined cloud processing for environ-
ment reconstruction using elevation maps have been deter-
mined following the development of Fankhauser et al. (2018).
These maps are generated from an input of point clouds and

an associated odometry frame from ARTU-R. Figure 5 shows
the result of the reconstruction of the test area in front of the
robot based on different parameters, aiming to balance real-
time processing and the maximization of the test area recon-
struction (covered area). This area, composed of a platform
and anchored modules, was placed in front of the robot in the
previously blind spot. The experimentally determined param-
eters were an update frequency of 10 Hz, a spatial resolution
of 0.02 m between points, and the downsampling value de-
pending on the number of points; in this case, a 25% reduction
was sufficient.

Figure 5: Reconstruction of the test area confirmed by elements anchored to
a 0.5x0.5 meter panel. (a) 5 cm mesh. (b) 2 cm mesh. (c) 0.5 cm mesh.

Figure 5 highlights the different types of resolutions su-
perimposed on the test area. In case (a), the geometric resolu-
tion of details is lost, but the reconstructed area is maximized
(with the robot stationary). Case (c) maximizes the details, but
the computational processing increases significantly. Case (b)
balances processing speed and reconstruction details, making
it the best option.

3.2. Application to the reconstruction of environments

Once the operating parameters were defined, the recon-
struction of an outdoor environment was carried out. This
environment, characterized by vegetation and medium-sized
walls, had been previously reconstructed by the authors using
the RTAB-Map method, as detailed in Cruz Ulloa et al. (2024).
Figure 6(a) shows the result of the reconstruction with RTAB-
Map in grey and provides a perspective of the environment in
the upper left corner.

On the other hand, figure 6(b) shows the reconstruction of
the same environment (in false colour according to the ver-
tical axis) using the sensory input method proposed in this
article. Four phases of the robot’s movements to complete
the reconstruction are shown, completing a 360-degree turn to
capture ninety per cent of the information. Table 1 presents the
significant improvements in reconstruction with the proposed
method; for this evaluation, ten reconstruction tests were car-
ried out.
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(a)

(b)

Figure 6: (a) Reconstruction of an outdoor environment developed by the au-
thors in Cruz Ulloa et al. (2024). (b) Stages of environment reconstruction
with the implemented method.

Table 1: Comparative evaluation of parameters for environment reconstruc-
tion, related to the development shown in Figure 6.

Single sensory
input

Strategic sensory
combination

Reconstruction time 56 s 13 s
Required robot
maneuverability High Low
Spatial resolution 0.02 m 0.02 m
Complexion index
(A Captured/A Total) 89.3 % 98.2 %

3.3. Relevance of the Proposed Method

Figure 7: Initial state of capturing environmental information before move-
ment.

One of the main advantages of the implemented method
is the rapid acquisition of spatial depth information for sub-
sequent trajectory estimation. In Figure 7, the robot is shown
in a static state before movement, with its four legs forming
a support polygon. Here, a projection of the elevation map
is evident, extending from the legs to the first three meters,
where a wall is located.

The visible field is initially reconstructed from the robot’s
perspective in a static state 30 centimetres above the ground.
However, as the robot advances, terrain details are refined us-
ing the short-range sensor. The method for generating the el-
evation map relies on the odometry provided by the robot’s
IMU, allowing the map to be refined with a higher degree
of detail. Therefore, if the robot experiences oscillations and
sharp turns during movement, the generation of the map is not
affected.

Figure 8: Highly detailed elevation map, corresponding to the robot’s progress
over unstructured terrain.

Figure 8 shows the robot’s progress over a test scenario
composed of a series of planks with ramps and debris. Com-
pared to Figure 7, a higher level of detail in the elevation
map reconstruction is evident. In the first instance (initial in-
formation capture state), this would be useful for generating
a general plan to approach the terrain in a certain direction.
Meanwhile, the adjustments with the second sensor would al-
low corrections (local planner) to be made to the initial global
plan.

4. Conclusions and Future Work

This work has developed and implemented a method for
minimizing occluded areas in robots’ fields of vision. It high-
lights its functionality and applicability to legged robots by
fusing information from sensors strategically placed in the
robot’s forward field of view, using short—and long-range
RGB-D cameras.

The proposed method has demonstrated real-time func-
tionality and robustness in decentralized systems. It avoids
timing latencies and synchronization issues in the association
of frames when handling point clouds from multiple sources.

The pre and post-processing phases of point clouds have
facilitated their applicability to the generation of elevation
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maps in environment reconstruction, thanks to the manage-
ment and handling of scales, noise, and parameters of the
clouds from their acquisition.

Figure 9: Displacement of the quadruped robot over terrain with a 2-2 alter-
nating gait pattern, where sinusoidal waves of different colours represent the
trajectories followed by the tip of each leg.

In future work, the integration of elevation maps with the
robot’s gait planning system is proposed, incorporating tech-
niques based on BLNN (Brain-Like Neural Networks) to help
predict movements for positioning the robot’s leg at each mo-
ment, as well as optimizing routes through these maps to nav-
igate terrain more efficiently in terms of both safety and time.
Figure 9 demonstrates the current functionality of the planner
on flat terrain (the elevation map is overlaid for visual pur-
poses only), where different colours (blue, red, purple, and
yellow) of the sinusoidal waves indicate the trajectory that
each leg will follow with each step.
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