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Resumen

La detección de la espasticidad es compleja debido a su origen en el sistema nervioso central y los sı́ntomas musculares. Este
proyecto desarrolla un método automático para detectar el grado de espasticidad según la escala Ashworth, usando movimientos
pasivos, rápidos y suaves en el paciente y midiendo la excitación cerebral. Software como OpenSim y técnicas como Computed
Muscle Control (CMC) han facilitado esta tarea ofreciendo el valor de la excitación cerebral dada una trayectoria de movimiento,
aunque presentan errores cuando el tipo de movimiento es suave y rápido. Este artı́culo implementa el integrador Hybrid
Computed Muscle Control (HCMC) con el método Runge-Kutta, mejorando la precisión con un error del 3% respecto a CMC.
La implementación que se ha desarrollado en Python aumenta la accesibilidad y permitirá crear una base de datos de pacientes
virtuales para aplicar técnicas de Machine Learning, avanzando en el desarrollo de nuevos métodos de diagnóstico.

Palabras clave: Tecnologı́a de asistencia e ingenierı́a de rehabilitación, Bioinformática, Modelización, simulación y
visualización de sistemas biomédicos, Dinámica y control, Identificación y validación, Control predictivo de modelos y basado
en la optimización, Programación, coordinación, optimización .

Integrador para Simulación Músculo-esquelética en Python

Abstract

The detection of spasticity is complex due to its origin in the central nervous system and muscular symptoms. This project
develops an automatic method to detect the degree of spasticity according to the Ashworth scale, using passive, fast and smooth
movements in the patient and measuring brain excitation. Software such as OpenSim and techniques such as Computed Muscle
Control (CMC) have facilitated this task by providing the value of brain excitation given a movement trajectory, although they
present errors when the type of movement is smooth and fast. This paper implements the Hybrid Computed Muscle Control
(HCMC) integrator with the Runge-Kutta method, improving the accuracy with an error of 3% with respect to CMC. The
implementation that has been developed in Python increases accessibility and will allow the creation of a virtual patient database
to apply Machine Learning techniques, advancing the development of new diagnostic methods.

Keywords: Assistive technology and rehabilitation engineering, Bioinformatics, Biomedical system modeling, simulation and
visualization, Dynamics and control, Identification and validation, Model predictive and optimization-based control,
Scheduling, coordination, optimization .

1. Introduction

Spasticity is generally defined as a “disorder of sensory-
motor control resulting from upper motor neuron injury, pre-

senting as intermittent or sustained involuntary activation of
muscles” (Burridge et al., 2005). We use this definition to
highlight the complexity of objectively measuring the level of
involvement of the disorder in motion because of the variety of
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symptoms and the nature of the disorder in the central nervous
system.

The Ashworth scale is used to identify the level of spastic-
ity, with values between zero and four. It represents the lack
of increased muscle tone with the lowest values (0, 1, 1+), and
severe limitations in muscle resistance to stretching with the
highest (2, 3, 4). The diagnosis of a patient on this scale is
made by observing slow and smooth voluntary movements of
the involved limbs. Therefore, conventional medical methods
are ineffective and slow Seth et al. (2011). As a consequence,
there has been a growing need in recent years to develop in-
strumented or automated methods for the assessment of spas-
ticity in neurorehabilitation Bengio et al. (1994).

To provide a solution in this area, we are looking for an al-
gorithm that can calculate muscle excitation patterns based on
a particular body movement trajectory. One crucial criterion
that must be met is code structure and accessibility in order
to serve as a foundation for future applications with Machine
Learning modules in Python. Furthermore, this algorithm will
allow us to build a synthetic patient database, which will be
used to identify an adaptive strategy that works for each indi-
vidual with spasticity. Actual methods are primarily produced
using software such as OpenSim or Mujoco, and it is difficult
to work on them for the time required to extract the necessary
information: excitations of the muscles implied in the studied
movement de-la Torre et al. (2024).

Prior to building the artificial patient database, the main
goal is to create an algorithm that can calculate muscle ex-
citation patterns based on a given body movement trajectory.
To do so, it is essential to comprehend that, during voluntary
movement, the brain releases an excitement impulse that goes
via nerves to the muscles and produces force. These forces
acting on the bones cause the joints to move in various direc-
tions. This suggests that a biological model for muscle dy-
namics must be constructed in order to extract the excitation
from the equation of motion Delp and Loan (2000).

The analysis of the situation’s modelling, including the se-
lection of the muscle model and the dynamics for the equa-
tions of motion, is presented in Section 2. In Section 3, alter-
native integration methods, and accessible software for solv-
ing the problem, are compared to the actual approach utilised
in this article. Furthermore, in Section 4, the method is tested
with simulated data to illustrate the improvements.

2. Biomedical Modelling of the Musculoskeletal Dynamics

Let T ∈ R be the final time of the movement of the patient.
Then, v(t), t ∈ [0,T ] is the muscle fibre velocities and V ∈ R
is the limit velocity where spasticity starts to show symptoms
in movement behaviour. If we consider u(t), t ∈ [0,T ] as the
brain excitation, and G ∈ {0, 1, 1+, 2, 3, 4} the spasticity level
with the Ashworth scale.

u̇(t) =

G · v(t) if v(t) > V
0 if v(t) ≤ V .

(1)

The degree of spasticity may be easily determined if one
knows the brain excitation: 0 ≤ u(t) ≤ 1, t ∈ [0,T ], with this
approach. In order to calculate it, one must solve an inverse

kinetics problem using the joint space trajectories that repre-
sent the angular motions of joints (Wakeling et al., 2023). In
this article, the focus will be on modelling the gait’s outcomes
as it is the most complex movement to simulate and it can be
generalised to other limbs (Inai et al., 2020). To do this, we
can specify the joint space trajectory as

q(t) =

q1(t)
q2(t)
q3(t)

 ∈ R3, t ∈ [0,T ] ,

where each vector component represents the angles at differ-
ent legs’ joints: hip joint, q1(t) ∈ R, knee joint, q2(t) ∈ R, and
ankle joint, q3(t) ∈ R for each time step t ∈ [0,T ] as it can be
specified in Figure 1.

Figure 1: Leg scheme for implementing the musculoskeletal simulation using
generalised coordinates. In (a), we can observe the variables used for indi-
cating trajectories: angles between the vertical line and the thigh, shank, and
foot (q1, q2, q3). In (b), it is represented the musculoskeletal model with the
implied muscles in producing the gait (Inai et al., 2020).

To create any muscle-driven simulation tool, initially it is
important to choose a dynamic model of the musculoskele-
tal system and its interactions with the environment. Let
a(t) ∈ Rn, t ∈ [0,T ] where n ∈ N is the number of mus-
cles suggested in the action; in this case, n = 8 as in Figure 1.
The kinetics of muscle activation are expressed as follows:

ȧ(t) = fa(a(t), u(t)) , (2)

where fa(a(t), u(t)) is the activation function. The Hill-type
muscle model, a 3-element model based on a Contractile Ele-
ment (CE) in series with a Spring Element (SE), and an elas-
tic Parallel Element (PE), is the most commonly used muscle
model to analyse the dynamics of muscular contraction (Delp
and Loan, 2000). It is represented by the scheme in Figure 2,
and the variables utilised in the equations are:

• l̇M ∈ Rn(m/s) is the muscle fibre velocity.

• lM ∈ Rn(m) is the muscle fibre length.

• lM
0 ∈ R

n(m) is the optimal muscle fibre length.

• lT ∈ Rn(m) is the tendon length.

• lMT = lM + lT ∈ Rn(m) is the musculo-tendon length.

• lTS ∈ R
n(m) the tendon slack length and lMT (m) ∈ Rn is

the musculo-tendon length.

• FM
0 ∈ R

n(N) is the muscle force at optimal fibre length.

• fT ∈ Rn(N) is the tendon force at each muscle.
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• α (◦) ∈ Rn is the pennation angle, and α0 (◦) ∈ Rn is the
pennation angle at optimal fibre length.

Figure 2: The Hill model consists of a Contractile Element (CE), a Passive
Element (PE), and a Series Elastic Element (SEE) (Inai et al., 2020).

Taking this structure into account, in the algorithm it is
necessary to implement an integrator for solving numerically
the muscle contraction dynamic in Equation 3 and the equa-
tions of motion in Equation 4.

l̇M(t) = f −1
V (lM , lM

0 , l
T
S , l

MT , FM
0 , α0, a) , (3)

q̈(t) = fq̈(q, q̇, E,Q) = M(q)−1 · (C(q, q̇) +G(q) + Q + E) (4)

where M ∈ Rn×n is the mass matrix, C ∈ Rn the Coriolis and
centrifugal force, G ∈ Rn is the gravitational force, Q ∈ Rn is
the net joint moments and E ∈ Rn is the external forces.

Due to the software’s widespread use, the first intuition
for solving this model of musculoskeletal dynamics is to use
Computed Muscle Control (CMC) from OpenSim, an open-
source platform for modelling, simulating, and analysing the
neuro-musculoskeletal system, to create a set of muscle exci-
tation based on experimental kinematics and external forces
(Delp et al., 2007). However, there were certain limitations
while using this technique to achieve our ultimate goal of cre-
ating a synthetic patient dataset :

1. Errors in the generalised coordinates between the sim-
ulated and experimental kinematics may rise quickly
with high acceleration since it is determined by pro-
portional derivative control (Thelen and Anderson,
2006), (Delp and Loan, 2000) . When it comes to di-
agnosing a patient with spasticity, as the motions for
rehabilitation are typically smooth and rapid, an insuffi-
cient performance could result in an incorrect diagnosis.

2. The OpenSim software’s performance and accessibility
have not been improved enough for the task we would
like to conduct. It is not a practical tool for building a
database by collecting an extensive number of simula-
tions. It also makes applying Machine Learning meth-
ods to them challenging Wakeling et al. (2023).

3. Integrator: an Algorithm for Computing Muscle Exci-
tation

We propose the implementation of the new algorithm
called Hybrid Computed Muscle Control (HCMC). The main
motivation is to overcome the limitations presented in Sec-
tion 2 of CMC algorithm in accurately simulating muscle

excitation patterns that track kinematics during rapid move-
ments. Furthermore, to facilitate the accessibility throughout
Machine Learning libraries, instead of having the implementa-
tion in SciLab as in the cited article (Inai et al., 2020), we im-
plement the algorithm in Python. The usage of several Python
libraries will improve algorithm behavior, as shown in Table
2, in addition to improving accessibility and the foundation of
the future patient syntehtic database.

The basic idea behind HCMC is to use a hybrid of nu-
merical integration and optimisation to compute the net joint
moments in each time step of simulation and to optimise mus-
cle activation. In contrast to CMC, the algorithm’s initial step
involves determining the net joint moments Q from Equa-
tion 4 through a combination of optimisation and the 4th-order
Runge–Kutta method. The information from the previous time
step is derived from the simulation, and the desired net joint
moments are calculated through numerical integration utilis-
ing feedback gains and external forces. This approach pro-
vides improved accuracy in tracking kinematics, especially
during rapid movements (Inai et al., 2020). The static opti-
misation method is then used to optimise muscle activation
following the computation of net joint moments. This method
entails decreasing the sum of squared muscle activation while
guaranteeing that the computed net joint moments match or
exceed the specified ones.

Table 1 can be reviewed (Howell et al., 2023) to obtain a
more thorough understanding of the different approaches for
integrating the inferred equation based on the application, the
numerical solver and integrator, gradients, and the language it
has been developed in. This description helps us understand
the significance of the Python implementation and the absence
of Machine Learning adaptations in other muscle excitation
computation tools.

3.1. Code Implementation in Python

To assess the HCMC algorithm in Python, we employ
some improvements to the results by utilising well-known
Python libraries for optimisation, such as Scipy. Scipy offers
linear programming, constrained and nonlinear least-squares
optimisation techniques with the use of the Levenberg-
Marquardt algorithm. The qpsolvers library has been
utilised for solving quadratic programming problems, as can
be seen in Table 1.

When working on a small scale, the number of decimals
taken into account has a significant impact on the final re-
sult since differences in computing derivatives must be con-
sidered. The issue faced when implementing this computa-
tion is comparable to the vanishing gradient problem (Bengio
et al., 1994). It is essential to note that in SciLab, solvers
and integrators are based on symbolic interpretation instead
of numerical, thereby raising specific issues in the Python im-
plementation. Numpy offers a variety of data types for repre-
senting numbers, including float64 and float128, capable of
representing around 15 significant digits and 34 significant
digits, respectively. However, the use of float128 can lead to
slower computation time, greater memory consumption and
rounding errors in both data types. As a result, the use of
arbitrary-precision libraries such as mpmath can be beneficial
when working with problems that require high precision. Any
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Table 1: Comparison of engines used for robotics musculoskeletal simulations. Examining the various muscle excitation algorithms and software programs,
filtered by year (Howell et al., 2023). The gradients of the algorithm, the implementation language, the solver and integrator, and the applications are all used for
comparison. Note that: LCP: Linear Complementarity Problem. NCP-Nonlinear Complementarity Problem. CG-Conjugate Gradient. QP-Quadratic Program-
ming. LM-Levenberg-Maequardt algorithm.

simulator year application integrator solver language gradients
Ours 2024 Machine Learning implicit Euler/RK4 Newton/RK4/QP/LM Python finite-difference
Dojo 2022 robotics variational NCP Julia smooth gradient
Brax 2021 graphics explicit Euler N/A Python sub-gradient
RaiSim 2021 robotics implicit Euler bisection C++ -
Drake 2019 robotics implicit Euler / RADAU5 LCP / Newton C++ gradient-bundle
MuJoCo 2015 robotics implicit Euler / RK4 Newton / PSG / CG C finite-difference
DART 2012 robotics implicit Euler LCP C++ sub-gradient
Bullet 2006 graphics implicit Euler LCP C/C++ sub-gradient

calculation can be performed equally well at 10-digit or 1000-
digit precision (mpmath development team, 2023).

4. Results

To be able to prove the algorithm’s performance, we have
some synthetic data validation. Cosine curves were used
to create three repetitive movements, ranging from rest to a
flexed position, with a flexion angle of 10◦ of the hip, 20◦

flexion angle of the knee, and 10◦ plantar flexion angle of the
ankle joints. The most rapid range of movement (T = 0.6 s)
was used to illustrate the improvements. The musculoskeletal
model defined in Figure 1 and the parameters established in
the cited article were used (Inai et al., 2020). The motivation
for using synthetic data to validate the algorithm’s behavior
is to simplify the actual gait in a human body. We reduced
the movement to a three-joint scheme, a periodic movement,
and a limitation for each joint to produce the actual activity,
rather of utilizing six muscles and their joints to compute the
equation of motion.

The computation time for obtaining the excitation values
using HCMC in Python is 4.85 s, whereas it takes 7.7 s in
SciLab. The computational time for the Python CMC algo-
rithm is 4.6 s. These outcomes demonstrate how using Python
optimisation libraries enhances algorithm execution perfor-
mance.

From the results for each muscle excitation in Figure 3, we
can also see that as in CMC, maximum errors increased as the
total movement time of synthetic data decreases, in HCMC
algorithm this is overcome. Understanding the role that each
muscle plays in the gait is also made easier by Figure 3. The
rectus femoris, gastrocnemius, and iliopsas are the muscles
that require an excitation value u(t) > 1

2 at some time t ∈ [0,T ]
in order to execute the movement.

From the graphics of each muscle computation in Figure 3,
the variability of the results depending on the use of CMC or
HCMC is validated. Let ∆t = 0.01, then the used time parti-
tion is P = {t0 = 0, t1, . . . , tN = T }. Explicit errors are calcu-
lated using the simulated trajectory qsim(t j) ∈ R3 t j ∈ P, and
the synthetic trajectory q(t j) ∈ R3 t j ∈ P. The maximum error
at each joint,

ei
max = max

ti∈P

{∣∣∣qi(ti) − qi
sim(ti)

∣∣∣} i ∈ {1, 2, 3} ,

and RMSE error at each joint,

ei
RMS E =

1
N + 1

·
∥∥∥qi − qi

sim

∥∥∥2
=

1
N + 1

·

N∑
j=0

(
qi

sim(t j) − qi(t j)
)2

i ∈ {1, 2, 3} ,

are shown in Table 2. Taking into account all the computed
errors over a mean of 10 rounds, the error using HCMC is a
3% with respect to CMC.

Table 2: Maximum and RMSE error for applying HCMC algorithm to syn-
thetic data.

q1 q2 q3

emax(◦)
HCMC in Python 0.0537 0.0880 0.2305
CMC in Python 1.6756 2.8159 10.4
eRMS E(◦)
HCMC in Python 0.0104 0.01503 0.0375
CMC in Python 0.7147 1.2252 5.6407
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bilitación de terapias de miembro superior”, PID2020-
113508RB-I00, financed by AEI/10.13039/501100011033;
“RoboCity2030-DIH-CM, Madrid Robotics Digital Innova-
tion Hub”, S2018/NMT-4331, financed by “Programas de Ac-
tividades I+D en la Comunidad de Madrid”; “iREHAB: AI-
powered Robotic Personalized Rehabilitation”, ISCIII-AES-
2022/003041 financed by ISCIII and EU; and EU structural
funds.

References

Bengio, Y., Simard, P., Frasconi, P., 1994. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks
5 (2), 157–166.
DOI: 10.1109/72.279181

Burridge, J. H., Wood, D. E., Hermens, H. J., Voerman, G. E., Johnson, G. R.,
van Wijck, F., Platz, T., Gregoric, M., Hitchcock, R., Pandyan, A. D., 1
2005. Theoretical and methodological considerations in the measurement
of spasticity. Disability and Rehabilitation 27, 69–80.
DOI: 10.1080/09638280400014592



Garcı́a-Mascaraque Herrera, A. et al. / Jornadas de Automática, 45 (2024)
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