
Aproximación de tacto basada en fuerza para estimación de volumen

Castano-Amoros, J.a,∗, Trebuchon, K.b, Gil, P.a, Mezouar, Y.b

aUniversidad de Alicante, San Vicente del Raspeig, Alicante, Spain.
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Resumen

Un agarre robótico óptimo no puede limitarse a la estimación de pose de agarre del objeto mediante visión. Se hace necesario
el uso de sensores táctiles para conocer las propiedades fı́sicas de los objetos que se agarran. En este trabajo, integramos dos
sensores táctiles Contactile basados en la fuerza con una pinza ROBOTIQ 2F-140 y un robot UR5, para estimar el volumen de
un recipiente lleno de agua utilizando redes neuronales Perceptrón Multicapa (MLP). Durante la experimentación entrenamos y
evaluamos diferentes MLPs variando las fuerzas de entrada (Fx, Fy, Fz) en una tarea de regresión de volumen discreto en un
rango de entre 0ml y 300ml. El enfoque preliminar propuesto se compara con un método algebraico basado en el diagrama del
equilibrio de fuerzas, demostrando que nuestros resultados son más precisos, obteniendo un valor R2 un 8 % superior en el peor
de los casos, y del 30 % en el mejor.
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Force-based touch approach for volume estimation

Abstract

Optimal robotic grasping cannot be limited to the estimation of object grasping pose using vision-based methods. It is
necessary to use tactile sensors to learn the physical properties of the objects that are to be grasped. In this work, we integrated
two Contactile force-based tactile sensors with a 2F-140 ROBOTIQ gripper and a UR5 robot to estimate the volume of a water-
filled container using Multilayer Perceptron (MLP) neural networks. During experimentation, we trained and evaluated different
MLPs varying the input forces (Fx, Fy, Fz) in a task of discrete-volume regression in a range of between 0ml and 300ml. The
preliminary proposed approach is compared with an algebraic method based on the diagram of the equilibrium of forces, proving
that our results are more precise, obtaining a R2 value of 8 % higher in the worst-case scenario, and of 30 % in the best.
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1. Introduction and Related work

Traditionally, the research about robotic manipulation and
tactile sensing has been focused on the detection of physical
behaviors or events caused by undesired movements between
the tactile sensors and the surface of the grasped objects, for
example, the cases of contact (Zhang et al., 2019) or slippage
(Castaño-Amorós and Gil, 2023) prediction, estimation of the
grasping pose (Dikhale et al., 2022), etc.

However, another aspect that has not been explored as
much is the knowledge of the dynamic properties of robotic
grasping, such as when an object like a bottle contains liquid.
This internal weight could provoke instability during the gras-
ping of the object, leading to non-optimal control and mani-
pulation, or even causing collisions or object falls in the worst
case. It is, therefore, obvious that obtaining more knowledge
about this type of dynamic properties (volume, viscosity, den-
sity, etc.) will help to improve the robot’s skills applied to ma-
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nipulation tasks. To do so, the use of tactile sensors is adequa-
te because they can provide multi-modal data about physical
phenomena caused during the object handling task.

The development of touch-based sensors has grown expo-
nentially in recent years, resulting in a large number of dif-
ferent force and tactile sensors. In grasping, force sensors are
usually installed on the wrist of the robot whereas tactile sen-
sors are installed on the phalanges of a gripper or on a tool
mounted on the effector. Both of them respond to the applied
force and convert the value into a measurable magnitude. For
example, the most common tactile sensors are electrical-based
sensors, which employ capacitive technology, resistive, opti-
cal, etc. (Chi et al., 2018). Some of these sensors (Khamis
et al., 2019) are capable of providing pressure values for a
contact area while others only provide a representation of the
contact without knowledge of the applied forces (Yuan et al.,
2017), (Lambeta et al., 2020).

In this work, tactile sensors have been applied for the afo-
rementioned purpose, which is to estimate the volume of a
water-filled container like a bottle or jar. In recent works, other
authors tried to solve similar tasks. For instance, in (Silva
et al., 2019), the authors used 3D force sensors to estimate
the weight of a cup filled with different volumes of sand by
studying the diagram of applied forces during the grasping.
In (Huang et al., 2022), the authors utilized the oscillations of
the markers of a Gelsight optical sensor caused by the move-
ment of a grasped bottle filled with liquid, to regress the liquid
viscosity and height value using a Gaussian Process Regres-
sion model. Other examples are the works done in (Zhu et al.,
2022) and (Chareyre et al., 2022), where they combined da-
ta from cameras and tactile sensors to estimate the volume of
a liquid in a container using a multi-task learning approach,
and they learned a policy to estimate general properties of an
object using only pushing actions, respectively.

Our work differs from others in the literature in that we let
neural networks learn the mapping between the input forces
and object properties like the volume of the container, rather
than studying the forces applied during the grasping task, and
our preliminary results show that this is a more accurate way
to approach the task. We also consider that force-based tactile
sensors are more appropriate than optical-based tactile sensors
for the task of volume estimation because it is easier to charac-
terize the force from a reading that represents the magnitude
than from an image contact as provided by an image-based
tactile sensor. This is, it is easier and explainable to use for-
ce values in newtons (N) as input to a control algorithm than
contact images that do not have a direct representation in N, as
discussed in (Zapata-Impata et al., 2019b) and (Zapata-Impata
et al., 2019a).

This paper is organized as follows: Section 2 describes the
integration between the tactile sensors, our controller, and the
rest of the hardware, Section 3 explains the calibration process
that the sensor needs to keep the operating temperature and the
force readings stable. In Section 4, the proposed task, the re-
corded data, and the utilized methods are explained in detail,
while in Section 5 the results from the proposed methods are
compared. Finally, Section 6 summarizes the results and futu-
re lines of work.

2. Software and Hardware Integration

This work revolves around the use of Contactile force sen-
sors (Khamis et al., 2019) (see Figure 1).

They consist of an array of nine pillars in a 3x3 configu-
ration. The center pillar is the tallest, and those in the corners
are the shortest. The sensing tips are made of silicone, which
behaves like a linear spring. This means that when grasping an
object, the outermost pillars will slip more easily than the cen-
ter pillar because the normal force applied to them is weaker.
Besides, the main advantage of these sensors over others ba-
sed on other technologies such as optics (i.e. DIGIT, GelSight,
etc.) is that they are capable of estimating a force vector of the
pressure exerted.

To make it applicable to robotic manipulation, we carry
out a sensor integration process, which tackled two major is-
sues: communication between the sensors and the existing ro-
botic system, and assembling the sensors on the gripper.

Figura 1: One of our Contactile sensors containing the 9 pillars in a 3x3 ma-
trix configuration.

We use ROS (Robotic Operative System) to communicate
the Contactile sensors with our Robotic Controller. The ma-
nufacturer of these sensors already provides the required ROS
topics, messages, and services to carry out optimal data com-
munication. Concretely, each Contactile sensor publishes for-
ce and displacement data from each of the nine pillars, and
also the global values. In this work, only the global tridimen-
sional force (Fx, Fy, Fz) from one sensor is utilized, which is
calculated as described in Eq. 1.

Fx =
9∑

i=1

f xi Fy =
9∑

i=1

f yi Fz =
9∑

i=1

f zi (1)

where Fx, Fy, and Fz correspond to the global forces in
axis x, y, and z, respectively, and f xi, f yi, and f zi correspond
to the forces in axis x, y, and z for each one of the nine pillars.

The following figure, Figure 2, shows a communication
diagram between our Control Unit, the Contactile sensors, and
the robotic gripper through ROS nodes.
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Figura 2: Data communication diagram between our PC, our Contactile sen-
sors, and the ROBOTIQ 2F gripper.

In addition, the Contactile sensors already provide a
graphical interface to show force values, nonetheless, this in-
terface is only available for Windows OS and our Control Unit
runs over Linux OS. In this work, we have, therefore, de-
veloped a custom graphical interface (see Figure 3) specific
for Ubuntu OS using Tkinter and Matplotlib libraries, and the
Python programming language.

Figura 3: An example of the distribution of our interface when grasping the
container. Note that the order of the plots of each pillar is organized as each
circle in the layout.

Our interface shows a layout of each running Contacti-
le sensor, which contains a 2D representation of each of the
pillars, drawn as a circle. Each circle contains a color rela-
ted to the applied force, on axis z, to the corresponding pillar
in the real sensor. This color turns to a darker red when the
applied force increases, and turns to a lighter pink when the
applied force decreases. Negative forces on axis z are repre-
sented with a gray color, although they are not representative,
as they are produced by noise in the sensors. Besides the intui-
tive visualization with colors of force data on axis z, we have
also included arrows to indicate the direction and sense of the
force data on axis x and y for each of the pillars. Moreover, a
2D plot containing force data ( f xi, f yi, f zi) is shown for each

pillar, and another 2D plot which only contains global forces
(Fx, Fy, Fz).

To assemble the two Contactile sensors with our ROBO-
TIQ 2F gripper, a 3D support was designed and 3D printed to
fix each sensor to the robotic gripper. The design of the sup-
port and the printed piece are shown in Figure 4.

The support was designed to geometrically align the sen-
sing zones of the Contactile sensors with the sensing zones of
other tactile sensors available in our lab, to obtain multi-modal
tactile feedback to use in future works. That way our 3D de-
sign for the Contactile sensors can be used independently or
jointly without modifying the overall grasping geometry. So,
after marking the center of the other tactile sensors, we took
measurements with a caliper. From this, we determined that
the support should have a 5.3mm-deep slot to accommodate
the sensor while making sure the central pillar sticks out to
the same height as the rest of the tactile sensors, and while
ensuring proper protection against lateral impacts. However,
because the Contactile’s cable can’t exit through the back of
the mount without being excessively bent, we added a 30° slo-
pe to keep the cable as straight as possible along the fingers.
We also included counterbores to the screw holes so that the
screw heads don’t interfere with the cable’s movements during
use.

With the sensors mounted on the gripper, the only remai-
ning task was to find a way to put the controller unit on the
robot arm. We opted for a two-part bracket that would be tigh-
tened around the circular portion of the last link of the robot,
just below the end-effector. This positioning prevents relative
movement between the gripper and the controller when ro-
tating the end-effector, thus avoiding premature wear of the
cables.

Figura 4: Design of case for Contactile sensor and mounting on 2F-140 RO-
BOTIQ gripper. (Top) Support to hold the sensor. (Bottom) Compartment and
bracket to hold the controller. Link to download CAD files.

3. Sensor Calibration

Temperature plays a critical role in converting the contact
signal reading into a pressure value. Prolonged use of the sen-
sors will cause the electronics to overheat, reducing the relia-
bility of the measurement. We could control the temperature
range of the local ambient environment (air-conditioning sys-
tem) to accomplish the tactile sensor works within a specified
temperature range, but it would be very difficult to control the
local temperature of the device and its circuits. This would

https://github.com/AUROVA-LAB/aurova_grasping/tree/main/Tactile_sensing/Contactile_sensor/CAD_files
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require the use of a heatsink but there is no physical space
in the gripper. Other alternatives such as using liquid cooling
or introducing insulating materials inside the sensor were not
considered since it is a commercial sensor that would imply a
loss of warranty. To reduce the cumulative measurement error
caused by the heat build-up that occurs with the use, we ha-
ve decided to automatically re-calibrate the sensor at regular
intervals of time. Overheating causes an increase in the mea-
surement provided by the sensor, therefore it is necessary to
determine the maximum allowable time after which the tem-
perature can cause inaccuracy in the pressure measurement, to
reset the value to zero by calling the manufacturer’s driver.

First, we placed one sensor on a flat, horizontal surface
with the pillars pointing vertically upwards. Then we turned it
on, calibrated it using the bias function provided by the ma-
nufacturer to set the zero, recorded five seconds of the output,
and let it heat up for thirty minutes without putting any weight
on it. During that time, a five-second sample was recorded in
a rosbag every five minutes, resulting in seven measures th-
roughout the experiment. We repeated the same process once,
but during the last test, a 500g object was placed on the sensor
before recording a rosbag, and then removed. This was meant
to see if measured weight had an impact on the drift. Figure
5 shows the measurements and deviation from the reference
weight in both experiments.

Figura 5: (Left) Measurements without any weight applied. (Right) Measure-
ments with a weight of 500g .

Once the data was recorded, we plotted the values and
tried fitting a mathematical model to the curves. This model
should be able to fit other curves representing intermediate
weights between 0 and 500g. The idea was to find a model that
generalize the behavior independently of the chosen weight
curve. Polynomial regression gave a good approximation of
a given curve. For the best cases, it was around 0.88 but it
only returned an R2 of around 0.6 on the other tests. It also
seems that additional weight increases the output drift. When
left alone, the reading of sensor increased by 0.3N in 30min,
but when the object was weighed, the error increased to 0.5N.

In the end, real-time drift correction depends on too many
factors to be reliable. We would advise either calibrating the
sensor before each measurement or calibrating every five mi-
nutes for better results.

4. Data, methods and learning

Before describing our dataset, it is important to clarify
what the task proposed in this work is: to estimate the vo-

lume in milliliters (ml) of a water-filled container grasped and
held by a robot, from the force values obtained by a Contactile
force sensor. Figure 6 shows an example of the robot grasping
the container, and a diagram with the corresponding forces.

Figura 6: (Left) Container filled with 250ml of water grasped by our UR5 ro-
bot using the 2F-140 ROBOTIQ gripper and the Contactile sensors. (Right)
Diagram of applied forces during grasping.

Note that Fy and W would be equivalent in the case of a
static setup, in which the gripper is performing a firm grasp.
However, in this work, the setup used to collect the data is
dynamic, not static, so we cannot ensure a firm grasp. We,
therefore, need to consider Fy and W as different variables.

To record our dataset, a fixed trajectory is planned for the
robot, which consists of grasping the container, lifting it 10cm,
and placing it on the table again, while the Contactile sen-
sors record the force values. Note that only the forces gene-
rated when the container is not in contact with the table are
considered. This process is repeated 14 times per volume, i.e.
{0, 50, 100, 150, 200, 250, 300}ml of water. Our dataset there-
fore consists of 98 lifts that correspond to a total of 201248
force values, approximately an average of 2053 force values
per lift.

Instead of splitting our dataset in a single train, validation,
and test configuration, a 5-fold cross-validation technique is
applied to generate 5 random sub-datasets (d1, d2, d3, d4, and
d5) with 10 random lifts of each volume for the training set
(70 lifts in total), and the remaining 4 lifts of each volume for
the test set (28 lifts in total).

In this work, we pretend to solve the proposed task utili-
zing 2 different methods to evaluate their performance later.

The first method consists of training an MLP
neural network to estimate a discrete volume
{0, 50, 100, 150, 200, 250, 300}ml of the water-filled contai-
ner. The MLP neural network consists of a single hidden layer
with 2 neurons. Note that deeper networks do not improve the
performance in this task. Figure 7 shows a simplified diagram
of our MLP and the corresponding mathematical equations to
calculate the output (ŷ) are shown in Eq. 2.



Castano-Amoros, J. et al. / Jornadas de Automática, 45 (2024)

Figura 7: Simplified diagram of the MLP neural network with 2 neurons in
the hidden layer.

z[1] = w[1] · x + b[1]

a[1] = g[1](z[1])

z[2] = w[2] · a[1] + b[2]

a[2] = ŷ = g[2](z[2])

(2)

where x are the input force values, w[1], b[1], w[2], and b[2]

correspond to the model weights and biases from layers 1 and
2, z[1] and z[2] represent the lineal output before applying the
activation function from layers 1 and 2, a[1] and a[2] corres-
pond to the calculated activation values from layers 1 and 2,
respectively. Note that g[1] is a Rectified Linear Unit (ReLU)
activation function, while g[2] is a linear activation function
that returns a continuous estimation of the volume.

Besides the MLP, an algebraic method is implemented to
estimate the weight of the water-filled container from the for-
ce values. This method is useful to compare the results of our
MLP with a baseline model. The formula that defines this ba-
seline method is shown in Eq. 3.

est vol = 1000 ×
Fy + µ × Fz

G
− m cont (3)

where est vol is the estimated volume in ml, Fy is the for-
ce reading from the Contactile sensor on axis y (see Figure 6),
µ is the friction coefficient of the container, Fz is the grasping
force obtained by the Contactile sensor on axis z (see Figure
6), G is the gravity (9.81m/s2), and m cont is the weight of
the empty container (56g).

Regarding the learning phase of both methods, on the one
hand, the MLP needs to learn the optimal parameters w[1], b[1],
w[2], and b[2] to minimize its cost function. Hyperparameter
optimization was performed using the grid search technique.
On the other hand, the second method needs to estimate the
friction coefficient of the plastic (PET) container, which is se-
lected based on other previous studies. The R2 metric is used
to evaluate the performance of both methods (see Eq. 4).

R2 = 1 −
∑m

i=1(y true − ŷ)2∑m
i=1(y true − y true)2

(4)

where m is the total number of samples, y true is the
ground truth volume, ŷ is the estimated volume, and y true
is the mean of y true for the m samples. Note that the highest
value of R2 metric is 1.0.

Concerning the learning phase of the proposed MLP, the
following hyperparameters were set through a grid search: one
hidden layer with two neurons, ReLU activation for the hid-
den layer, Adam optimization solver, L2 regularization term of
0.0001, batch size of 200 samples, learning rate equal to 0.001,

and a tolerance error to stop the training earlier of 0.0001 that
defines the number of training epochs.

To estimate the friction coefficient (µ) of the container, we
calculated Eq. 3 with 200 µ-values ranging from 0.1 to 0.4 for
the 5-fold training sets (d1 train, d2 train, d3 train, d4 train,
and d5 train) as can be seen in Figure 8. Thus, we obtained
a µ-value that maximizes the R2 metric for each training fold,
and we estimated the optimal µ-value (0.268) as the average
of these µ-values. This average µ is used on the test data.

Figura 8: Curve R2-µ corresponding to d1 train.

5. Experiments, analysis and results

The most relevant forces involved in a vertical displace-
ment of a planar grasping are the force readings on the axis
y and z (see Figure 6). The force reading on axis x is almost
negligible.

To evaluate the influence of the forces on the different axes
for the task of volume estimation, the MLP was trained with
different combinations of forces as input: i) {Fx, Fy, Fz}, ii)
{Fy, Fz}, iii) Fy, and iv) Fz. The MLP has been trained once
for each of the four input modalities and each training fold,
and later, it has been evaluated on each test fold (d1 test,
d2 test, d3 test, d4 test, and d5 test). Thus, five R2 values
have been calculated for each input modality. The following
bar plot, Figure 9, shows the mean R2 value and standard de-
viation of the 5 test folds for each input modality.

The results shown in Figure 9 are compared with the re-
sults obtained using the baseline method described in Eq. 3 in
Table 1. These results show that the MLP learned to map the
input forces to the volume of the container in a more precise
way when compared to the study of the forces applied du-
ring the grasping. This can happen because the MLP performs
a best approximation of the mathematical function without
the knowledge of the physical properties of the grasping task,
which may not be taken into account in Eq. 3. Another nega-
tive factor is the fact that the estimation of the friction coeffi-
cient µ may not be very precise, since it has a different value
for each object and material. Table 2 shows the results of the
best version of our MLP, which is the one using Fy and Fz as
input forces, when testing with the volume quantities defined
in our dataset. We have also tested with other intermediate vo-
lumes, which were not considered during the training phase,
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seeking to prove how the model generalizes. Although the es-
timations corresponding to the intermediate volumes are less
accurate, they are still quite promising, which proves that our
approach is able to generalize to other volumes, e.g. for a con-
tainer with 75ml and 125ml, the method estimates 73.62ml and
134.57ml, respectively.

Figura 9: Results in terms of R2 metric of the MLP trainings with different
input forces.

Tabla 1: Results comparison between MLP methods shown in Figure 7 and
baseline method est vol from Eq. 3.

Method R2

{Fx, Fy, Fz} 0.9852 ± 0.0011
{Fy, Fz} 0.9862 ± 0.0036

Fy 0.7651 ± 0.0195
Fz 0.9842 ± 0.0049

est vol (baseline) 0.6817 ± 0.0122

Tabla 2: Volume estimation using the best approach based on MLP {Fy, Fz}.
y true(ml) ŷ(ml)

0 19.62
50 56.74
100 105.04
150 150.32
200 190.75
250 239.07
300 313.06

6. Conclusiones

In this work, we have developed an initial implementation
of a tactile-based robotic system to estimate the volume of a
water-filled container by mapping input force values to milli-
liters using MLP neural networks. We obtained preliminary
results that prove that the force Fz is the more relevant for-
ce involved in the grasping and vertical lift of the container
obtaining a R2 metric value around 0.98, being the forces Fy
and Fx less important for this task. This approach performs
better for this task compared with other approaches such as
the analysis of the equilibrium forces applied during the gras-
ping. Nonetheless, our system is still in the early stages of

development. We are therefore working on a fully continuous
regression method instead of our discrete version as well as
comparing it with other state-of-the-art methods. We also plan
to extend our method to estimate the volume of liquids other
than water, such as oil or detergent.
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